Square root in fixed point VHDL
In this blog we will design and implement a fixed point square root function in VHDL. The algorithm is based on the recursive Newton Raphson inverse square root algorithm and the implementation offers parametrizable pipeline depth, word length and the algorithm is built with VHDL records and procedures for easy use.
Mastering Modern FPGA Skills for Engineers
In the rapidly evolving tech industry, engineers must acquire proficiency in modern FPGA skills. These skills empower engineers to optimize designs, minimize resource usage, and efficiently address FPGA design challenges while ensuring functionality, security, and compliance.
Open-Source Licenses Made Easy with Buildroot and Yocto for Embedded Linux
In this article I will try to explain what are the copyrights/copyleft, what are the popular opensource software licenses, and how to make sure that your Embedded Linux system complies with them using popular build systems ; Buildroot or YOCTO projec
There are 10 kinds of people in the world
It is useful, in embedded software, to be able to specify values in binary. The C language lacks this facility. In this blog we look at how to fix that.
Getting Started With Zephyr: Devicetree Overlays
In this blog post, I show how the Devicetree overlay is a valuable construct in The Zephyr Project RTOS. Overlays allow embedded software engineers to override the default pin configuration specified in Zephyr for a particular board. In this blog post, I use I2C as an example. Specifically, I showed the default I2C pins used for the nRF52840 development kit in the nominal Zephyr Devicetree. Then, I demonstrated how an overlay can be used to override this pin configuration and the final result.
Embedded Developers, Ditch Your IDEs – Here’s Why!
Ditching your Integrated Development Environment (IDE) temporarily can be a transformative learning experience in embedded development. This post invites you to explore the underpinnings of IDEs by delving into alternative tools and processes like Makefile, CMake, Vim, GDB, and OpenOCD. Understanding these tools can demystify the background operations of IDEs, revealing the intricacies of compiling, linking, and debugging. This journey into the “under the hood” aspects of development is not just about learning new tools, but also about gaining a deeper appreciation for the convenience and efficiency that IDEs provide. By stepping out of your comfort zone and experimenting with these alternatives, you can sharpen your skills, enhance your knowledge, and possibly discover a more tailored and streamlined development experience. Whether you're a novice or a seasoned developer, this exploration promises insights and revelations that can elevate your embedded development journey.
C to C++: Using Abstract Interfaces to Create Hardware Abstraction Layers (HAL)
In C to C++, we've been exploring how to transition from a C developer to a C++ developer when working in embedded system. In this post, we will explore how to leverage classes to create hardware abstraction layers (HAL). You'll learn about the various inheritance mechanisms, what an virtual function is, and how to create an abstract class.
The Backstreet Consultant
In the uncharted land between Arduino-wielding kids and qualified electronics engineers emerged an entirely new market for embedded work. In this article, based on my personal experience and observations, I will attempt to outline this young market, the forces operating within it, and the kinds of people involved.
A short historyUp until fifteen years ago, give or take, embedded design was done exclusively by trained professionals: not just because of the required technical know-how, but also...
Are We Shooting Ourselves in the Foot with Stack Overflow?
Most traditional, beaten-path memory layouts allocate the stack space above the data sections in RAM, even though the stack grows “down” (towards the lower memory addresses) in most embedded processors. This arrangement puts your program data in the path of destruction of a stack overflow. In other words, you violate the first Gun Safety Rule (ALWAYS keep the gun pointed in a safe direction!) and you end up shooting yourself in the foot. This article shows how to locate the stack at the BEGINNING of RAM and thus point it in the "safe" direction.
nRF5 to nRF Connect SDK migration via DFU over BLE
This writeup contains some notes on how I was able to migrate one of my clients projects based on the nRF5 SDK, to nRF Connect SDK (NCS) based firmware, via a DFU to devices in the field over BLE.
Getting Started With Zephyr: Saving Data To Files
In this blog post, I show how to implement a Zephyr application to mount a microSD card, create a new file on the microSD card, and write data to it. The lessons learned from such an application can be helpful for devices out in the field that need to write data to off-board memory periodically, especially in cases where Internet access may be sporadic.
Adventures in Signal Processing with Python
Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being a good neighbor to The MathWorks. While I don’t make it a secret of my dislike of many aspects of MATLAB — which I mention later in this article — I do hope they can improve their software and reduce the price. Please note this...
Bit-Banged Async Serial Output And Disciplined Engineering
This post covers implementing asynchronous serial output directly on a GPIO with bit-banging. This can be a valuable debug tool for getting information out of a system. It also covers disciplined engineering, using the bit-banging module as an example and template you can apply to other projects.
Libgpiod - Toggling GPIOs The Right Way In Embedded Linux
OverviewWe all know that GPIO is one of the core elements of any embedded system. We use GPIOs to control LEDs and use them to monitor switches and button presses. In modern embedded systems, GPIOs can also be used as pins for other peripheral busses, such as SPI and I2C. Similar to the previous article on interacting with peripherals on an SPI bus in userspace via SPIdev (https://www.embeddedrelated.com/showarticle/1485.php), we can also control GPIOs from userspace on an embedded...
Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams
Today we're going to talk about data framing and something called COBS, which will make your life easier the next time you use serial communications on an embedded system -- but first, here's a quiz:
Quick Diversion, Part I: Which of the following is the toughest area of electrical engineering? analog circuit design digital circuit design power electronics communications radiofrequency (RF) circuit design electromagnetic...How to Estimate Encoder Velocity Without Making Stupid Mistakes: Part II (Tracking Loops and PLLs)
Yeeehah! Finally we're ready to tackle some more clever ways to figure out the velocity of a position encoder. In part I, we looked at the basics of velocity estimation. Then in my last article, I talked a little about what's necessary to evaluate different kinds of algorithms. Now it's time to start describing them. We'll cover tracking loops and phase-locked loops in this article, and Luenberger observers in part III.
But first we need a moderately simple, but interesting, example...
You Don't Need an RTOS (Part 4)
In this fourth (and final!) article I'll share with you the last of the inter-process communication (IPC) methods I mentioned in Part 3: mailboxes/queues, counting semaphores, the Observer pattern, and something I'm calling a "marquee". When we're done, we'll have created the scaffolding for tasks to interact in all sorts of different the ways. Additionally, I'll share with you another alternative design for a non-preemptive scheduler called a dispatch queue that is simple to conceptualize and, like the time-triggered scheduler, can help you schedule some of your most difficult task sets.
How to use SPI devices in NuttX RTOS
Previously in this EmbeddedRelated article, we saw how to use I2C device connected to your board. Although I2C devices are very common nowadays, probably you will need to use some SPI device as well. Today we will see how to do exactly that. So, lets to get started!
The SPI (Serial Peripheral Interface) is synchronous serial communication protocol (by synchronous it means there is a common clock signal to indicate when which signal transition will occur)....
New Comments System (please help me test it)
I thought it would take me a day or two to implement, it took almost two weeks...
But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.
Which means that:
- You can easily add images, either by drag and drop or through the 'Insert Image' button
- You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
- You can add code snippets and they will be highlighted with highlights.js
- You can edit...
Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine
Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.
One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...
Delayed printf for real-time logging
You often debug by adding a few printfs and looking at the logs. In some real-time/low-level contexts though, you don't have time for text formatting.
You don't want prints to affect timing too much, because then timing-related bugs you're chasing might disappear. And you certainly don't want the system to stop functioning altogether because prints cause it to miss real-time deadlines.
A common alternative to prints is more "raw" logging - an event buffer, where event is a union keeping...
Android for Embedded Devices - 5 Reasons why Android is used in Embedded Devices
The embedded purists are going to hate me for this. How can you even think of using Android on an embedded system ? It’s after all a mobile phone operating system/software.
Sigh !! Yes I did not like Android to begin with, as well - for use on an Embedded System. But sometimes I think the market and needs decide what has to be used and what should not be. This is one such thing. Over the past few years, I have learned to love Android as an embedded operating system....
Lazy Properties in Python Using Descriptors
This is a bit of a side tangent from my normal at-least-vaguely-embedded-related articles, but I wanted to share a moment of enlightenment I had recently about descriptors in Python. The easiest way to explain a descriptor is a way to outsource attribute lookup and modification.
Python has a bunch of “magic” methods that are hooks into various object-oriented mechanisms that let you do all sorts of ridiculously clever things. Whether or not they’re a good idea is another...
Byte and Switch (Part 2)
In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:
We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...
Two Capacitors Are Better Than One
I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:
And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.
Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?
I...
The Least Interesting Circuit in the World
It does nothing, most of the time.
It cannot compute pi. It won’t oscillate. It doesn’t light up.
Often it makes other circuits stop working.
It is… the least interesting circuit in the world.
What is it?
About 25 years ago, I took a digital computer architecture course, and we were each given use of an ugly briefcase containing a bunch of solderless breadboards and a power supply and switches and LEDs — and a bunch of
The habitat of hardware bugs
The Moscow apartment which little me called home was also home to many other creatures, from smallish cockroaches to biggish rats. But of course we rarely met them face to face. Evolution has weeded out those animals imprudent enough to crash your dinner. However, when we moved a cupboard one time, we had the pleasure to meet a few hundreds of fabulously evolved cockroaches.
In this sense, logical bugs aren't different from actual insects. You won't find...
Arduino robotics #4 - HC-SR04 ultrasonic sensor
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
Important Programming Concepts (Even on Embedded Systems) Part II: Immutability
Other articles in this series:
- Part I: Idempotence
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines
- Part VI: Abstraction
This article will discuss immutability, and some of its variations in the topic of functional programming.
There are a whole series of benefits to using program variables that… well, that aren’t actually variable, but instead are immutable. The impact of...