
When a Mongoose met a MicroPython, part I
This is more a framework than an actual application, with it you can integrate MicroPython and Cesanta's Mongoose.
Mongoose runs when called by MicroPython and is able to run Python functions as callbacks for the events you decide in your event handler. The code is completely written in C, except for the example Python callback functions, of course. To try it, you can just build this example on a Linux machine, and, with just a small tweak, you can also run it on any ESP32 board.
Getting Started With CUDA C on an Nvidia Jetson: GPU Architecture
In the previous blog post (Getting Started With CUDA C on Jetson Nvidia: Hello CUDA World!) I showed how to develop applications targeted at a GPU on a Nvidia Jetson Nano. As we observed in that blog post, performing a calculation on a 1-D array on a GPU had no performance benefit compared to a traditional CPU implementation, even on an array with many elements. In this blog post, we will learn about the GPU architecture to better explain the behavior and to understand the applications where a GPU shines (hint: it has to do with graphics).
Understanding Microchip 8-bit PIC Configuration
The second post of a five part series picks up getting started developing with Microchip 8-bit PIC Microcontroller by examining the how and why of processor configuration. Topics discussed include selecting the oscillator to use during processor startup and refining the configuration once the application starts. A walk through of the code generated by the Microchip IDE provides a concrete example of the specific Configuration Word and SFR values needed to configure the project specific clock configuration.
C to C++: Templates and Generics – Supercharging Type Flexibility
"C to C++: Templates and Generics – Supercharging Type Flexibility" illuminates the rigidity of C when managing multiple types and the confusion of code replication or macro complexity. In contrast, C++ offers templates, acting as type-agnostic blueprints for classes and functions, which allows for the creation of versatile and reusable code without redundancy. By using templates, developers can define operations like add once and apply them to any data type, simplifying codebases significantly. Generics further this concept, enabling a single code structure to handle diverse data types efficiently—a boon for embedded systems where operations must be performed on varying data, yet code efficiency is critical due to resource limitations. The blog walks through practical applications, showcasing how templates streamline processes and ensure type safety with static_assert, all while weighing the pros and cons of their use in embedded software, advocating for careful practice to harness their full potential.
Using (Apache) NuttX Buttons Subsystem
Previously in this EmbeddedRelated article, we saw how to use LEDs Subsystem on NuttX testing on RaspberryPi Pico. In the same way we avoided using GPIO Subsystem to control LEDs we can avoid using GPIO Subsystem to read Buttons inputs. That is right, NuttX has an Input Device Subsystem like Linux and today we will learn how to use it.
Buttons are one of the simplest user input interface and after the famous "hello world LED" example they are probably the second...
Finite State Machines (FSM) in Embedded Systems (Part 2) - Simple C++ State Machine Engine
When implementing state machines in your project it is an advantage to rely on a tried and tested state machine engine. This component is reused for every kind of application and helps the developer focus on the domain part of the software. In this article, the design process that turns a custom C++ code into a finite-state machine engine is fully described with motivations and tradeoffs for each iteration.
Getting Started With CUDA C on an Nvidia Jetson: Hello CUDA World!
In this blog post, I introduce CUDA, which is a framework designed to allow developers to take advantage of Nvidia's GPU hardware acceleration to efficiently implement certain type of applications. I demonstrate an implementation to perform vector addition using CUDA C and compare it against the traditional implementation in "regular" C.
Modeling Gate Drive Diodes
This is a short article about how to analyze the diode in some gate drive circuits when figuring out turn-off characteristics --- specifically, determining the relationship between gate drive current and gate voltage during turn-off of a power transistor.
Getting Started with the Microchip PIC® Microcontroller
This first post of a five part series looks at the available hardware options for getting started with Microchip 8-bit PIC® Microcontroller, explores the MPLAB® X Integrated Development Environment and walks through setting up a project to expose the configured clock to an external pin and implement a single output GPIO to light an LED.
Make Your Own MCU Boards (2023 Teardown Conference)
Ditch the development boards! Products like the Nucleo development boards serve a wonderful purpose, but they’re ill-suited for projects that need to be small and cheap, such as hobby projects or products just beginning a production run. In this talk (a recording from the 2023 Teardown Conference), you’ll learn how to put a microcontroller or other custom circuit on a PCB a little larger than a stick of gum for less than $3 a board.
Review: Embedded Software Design: A Practical Approach to Architecture, Processes, and Coding Techniques
IntroductionFull disclosure: I was given a copy of this book to review.
Embedded Software Design: A Practical Approach to Architecture, Processes, and Coding Techniques, by Jacob Beningo, is an excellent introduction to strategies for embedded systems design and bringing those designs to fruition. Renowned embedded systems expert Jack Ganssle was the technical reviewer.
This is a practical how-to book on the modern professional practice of embedded systems...
My Love-Hate Relationship with Stack Overflow: Arthur S., Arthur T., and the Soup Nazi
Warning: In the interest of maintaining a coherent stream of consciousness, I’m lowering the setting on my profanity filter for this post. Just wanted to let you know ahead of time.
I’ve been a user of Stack Overflow since December of 2008. And I say “user” both in the software sense, and in the drug-addict sense. I’m Jason S, user #44330, and I’m a programming addict. (Hi, Jason S.) The Gravatar, in case you were wondering, is a screen...
Understanding Yocto Project Layers: A Modular Approach to Embedded Systems Development
In the world of embedded systems, flexibility and modularity are key to managing complex projects efficiently. The Yocto Project, a powerful build system for creating custom Linux distributions, embraces this philosophy through the use of layers. These layers are essentially sets of repositories that contain the instructions and metadata required to build a specific target image. By leveraging layers, developers can modularize their projects, reusing and sharing previously developed metadata...
How Embedded Linux is used in Spacecrafts !
This article dives into the application of Linux in spacecraft, examining the challenges it poses and proposing potential solutions. Real-life examples will be discussed, while also addressing the drawbacks of employing Linux in safety-critical missions.
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 5)
In this article we’re going to take a look at cycle time, queues, and inventory. Cycle time is a manufacturing term — for anything, not just semiconductors — meaning how long it takes for an individual product to make its way through a manufacturing process, from start to finish. We’re going to try to understand how long it takes to manufacture semiconductors. In particular, we’re going to try to answer these questions:
- How long does it take...
Adventures in Signal Processing with Python
Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being a good neighbor to The MathWorks. While I don’t make it a secret of my dislike of many aspects of MATLAB — which I mention later in this article — I do hope they can improve their software and reduce the price. Please note this...
Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams
Today we're going to talk about data framing and something called COBS, which will make your life easier the next time you use serial communications on an embedded system -- but first, here's a quiz:
Quick Diversion, Part I: Which of the following is the toughest area of electrical engineering? analog circuit design digital circuit design power electronics communications radiofrequency (RF) circuit design electromagnetic...Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 2)
Welcome back! Today we’re going to zoom around again in some odd directions, and give a roundabout introduction to the semiconductor industry, touching on some of the following questions:
- How do semiconductors get designed and manufactured?
- What is the business of semiconductor manufacturing like?
- What are the different types of semiconductors, and how does that affect the business model of these manufacturers?
- How has the semiconductor industry evolved over...
Getting Started With Zephyr: Devicetree Overlays
In this blog post, I show how the Devicetree overlay is a valuable construct in The Zephyr Project RTOS. Overlays allow embedded software engineers to override the default pin configuration specified in Zephyr for a particular board. In this blog post, I use I2C as an example. Specifically, I showed the default I2C pins used for the nRF52840 development kit in the nominal Zephyr Devicetree. Then, I demonstrated how an overlay can be used to override this pin configuration and the final result.
Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough
Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this series for a while. Fourth installments after a hiatus can bring bad vibes. I mean, look what it did to George Lucas: now we have Star Wars Episode I: The Phantom Menace and
R1C1R2C2: The Two-Pole Passive RC Filter
I keep running into this circuit every year or two, and need to do the same old calculations, which are kind of tiring. So I figured I’d just write up an article and then I can look it up the next time.
This is a two-pole passive RC filter. Doesn’t work as well as an LC filter or an active filter, but it is cheap. We’re going to find out a couple of things about its transfer function.
First let’s find out the transfer function of this circuit:
Not very...
Linear Feedback Shift Registers for the Uninitiated, Part I: Ex-Pralite Monks and Finite Fields
Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.
— Évariste Galois, May 29, 1832
I was going to call this short series of articles “LFSRs for Dummies”, but thought better of it. What is a linear feedback shift register? If you want the short answer, the Wikipedia article is a decent introduction. But these articles are aimed at those of you who want a little bit deeper mathematical...
Embedded Toolbox: Programmer's Calculator
Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.
I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...
Cortex-M Exception Handling (Part 1)
This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems.
Visual Studio Code Extensions for Embedded Software Development
Visual Studio Code has become one of the most popular IDEs in the world. To date, software developers have downloaded it more than 40 million times! I suspect you’ve at least heard of it, if not already attempting to use it. Visual Studio Code allows developers to easily customize their development environment which can help them accelerate development, minimize bugs, and make developing software overall much better.
One challenge with Visual Studio Code is that embedded software...
VHDL tutorial - A practical example - part 1 - Hardware
In previous posts I described some simple VHDL examples. This time let's try something a little more complex. This is part one of a multiple part article. This is intended to be a detailed description of one of several initial designs that I developed for a client. This design never made it into a product, but a similar design was used and is currently being produced. As a considerable amount of work was put into this effort, I decided to share this design...
Introduction to Microcontrollers - 7-segment displays & Multiplexing
Doing the 7 Segment ShuffleThe 7 segment display is ubiquitous in the modern world. Just about every digital clock, calculator and movie bomb has one. The treadmills at my gym have 6 or 7, each one displaying 3 or 4 digits. What makes the 7-seg interesting is that it presents an opportunity to make a trade off between GPIO (output pins) for time. Every 7-seg display requires 8 outputs (the 7 segments and usually either a decimal point or a...
Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part V: State Machines
- Part VI: Abstraction
Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but
Lost Secrets of the H-Bridge, Part I: Ripple Current in Inductive Loads
So you think you know about H-bridges? They're something I mentioned in my last post about signal processing with Python.
Here we have a typical H-bridge with an inductive load. (Mmmmm ahhh! It's good to draw by hand every once in a while!) There are four power switches: QAH and QAL connecting node A to the DC link, and QBH and QBL connecting node B to the DC link. The load is connected between nodes A and B, and here is represented by an inductive load in series with something else. We...
Lost Secrets of the H-Bridge, Part III: Practical Issues of Inductor and Capacitor Ripple Current
We've been analyzing the ripple current in an H-bridge, both in an inductive load and the DC link capacitor. Here's a really quick recap; if you want to get into more details, go back and read part I and part II until you've got equations coming out of your ears. I promise there will be a lot less grungy math in this post. So let's get most of it out of the way:
Switches QAH and QAL are being turned on and off with pulse-width modulation (PWM), to produce an average voltage DaVdc on...
