EmbeddedRelated.com
Imagine Conference

The volatile keyword

Colin Walls April 1, 20245 comments

Although the C keyword volatile is very useful in embedded applications, care is needed to use it correctly and vigilance is required to ensure its correct implementation by compilers.


When a Mongoose met a MicroPython, part I

Sergio R Caprile March 31, 2024

This is more a framework than an actual application, with it you can integrate MicroPython and Cesanta's Mongoose.
Mongoose runs when called by MicroPython and is able to run Python functions as callbacks for the events you decide in your event handler. The code is completely written in C, except for the example Python callback functions, of course. To try it, you can just build this example on a Linux machine, and, with just a small tweak, you can also run it on any ESP32 board.


Getting Started With CUDA C on an Nvidia Jetson: GPU Architecture

Mohammed Billoo March 28, 2024

In the previous blog post (Getting Started With CUDA C on Jetson Nvidia: Hello CUDA World!) I showed how to develop applications targeted at a GPU on a Nvidia Jetson Nano. As we observed in that blog post, performing a calculation on a 1-D array on a GPU had no performance benefit compared to a traditional CPU implementation, even on an array with many elements. In this blog post, we will learn about the GPU architecture to better explain the behavior and to understand the applications where a GPU shines (hint: it has to do with graphics).


Understanding Microchip 8-bit PIC Configuration

Luther Stanton March 26, 20244 comments

The second post of a five part series picks up getting started developing with Microchip 8-bit PIC Microcontroller by examining the how and why of processor configuration. Topics discussed include selecting the oscillator to use during processor startup and refining the configuration once the application starts. A walk through of the code generated by the Microchip IDE provides a concrete example of the specific Configuration Word and SFR values needed to configure the project specific clock configuration.


C to C++: Templates and Generics – Supercharging Type Flexibility

Jacob Beningo March 24, 20242 comments

"C to C++: Templates and Generics – Supercharging Type Flexibility" illuminates the rigidity of C when managing multiple types and the confusion of code replication or macro complexity. In contrast, C++ offers templates, acting as type-agnostic blueprints for classes and functions, which allows for the creation of versatile and reusable code without redundancy. By using templates, developers can define operations like add once and apply them to any data type, simplifying codebases significantly. Generics further this concept, enabling a single code structure to handle diverse data types efficiently—a boon for embedded systems where operations must be performed on varying data, yet code efficiency is critical due to resource limitations. The blog walks through practical applications, showcasing how templates streamline processes and ensure type safety with static_assert, all while weighing the pros and cons of their use in embedded software, advocating for careful practice to harness their full potential.


Using (Apache) NuttX Buttons Subsystem

Alan C Assis March 22, 2024

Previously in this EmbeddedRelated article, we saw how to use LEDs Subsystem on NuttX testing on RaspberryPi Pico. In the same way we avoided using GPIO Subsystem to control LEDs we can avoid using GPIO Subsystem to read Buttons inputs. That is right, NuttX has an Input Device Subsystem like Linux and today we will learn how to use it.

Buttons are one of the simplest user input interface and after the famous "hello world LED" example they are probably the second...


Finite State Machines (FSM) in Embedded Systems (Part 2) - Simple C++ State Machine Engine

Massimiliano Pagani March 14, 2024

When implementing state machines in your project it is an advantage to rely on a tried and tested state machine engine. This component is reused for every kind of application and helps the developer focus on the domain part of the software. In this article, the design process that turns a custom C++ code into a finite-state machine engine is fully described with motivations and tradeoffs for each iteration.


Getting Started With CUDA C on an Nvidia Jetson: Hello CUDA World!

Mohammed Billoo March 13, 2024

In this blog post, I introduce CUDA, which is a framework designed to allow developers to take advantage of Nvidia's GPU hardware acceleration to efficiently implement certain type of applications. I demonstrate an implementation to perform vector addition using CUDA C and compare it against the traditional implementation in "regular" C.


Modeling Gate Drive Diodes

Jason Sachs March 11, 20241 comment

This is a short article about how to analyze the diode in some gate drive circuits when figuring out turn-off characteristics --- specifically, determining the relationship between gate drive current and gate voltage during turn-off of a power transistor.


Getting Started with the Microchip PIC® Microcontroller

Luther Stanton March 11, 2024

This first post of a five part series looks at the available hardware options for getting started with Microchip 8-bit PIC® Microcontroller, explores the MPLAB® X Integrated Development Environment and walks through setting up a project to expose the configured clock to an external pin and implement a single output GPIO to light an LED.


Unit Tests for Embedded Code

Stephen Friederichs March 5, 201411 comments

I originate from an electrical engineering background and my first industry experience was in a large, staid defense contractor. Both of these experiences contributed to a significant lack of knowledge with regards to software development best practices. Electrical engineers often have a backwards view of software in general; large defense contractors have similar views of software and couple it with a general disdain for any sort of automation or ‘immature’ practices.  While there...


PID Without a PhD

Tim Wescott April 26, 201612 comments

I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.

This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...


How to Build a Fixed-Point PI Controller That Just Works: Part II

Jason Sachs March 24, 20122 comments

In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:

  • various forms and whether to use the canonical form for z-transforms (don't do it!)
  • order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
  • saturation and anti-windup

In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...


Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Jason Sachs November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...


From Baremetal to RTOS: A review of scheduling techniques

Jacob Beningo June 8, 201617 comments

Transitioning from bare-metal embedded software development to a real-time operating system (RTOS) can be a difficult endeavor. Many developers struggle with the question of whether they should use an RTOS or simply use a bare-metal scheduler. One of the goals of this series is to walk developers through the transition and decision making process of abandoning bare-metal thinking and getting up to speed quickly with RTOSes. Before diving into the details of RTOSes, the appropriate first step...


Introduction to Microcontrollers - Button Matrix & Auto Repeating

Mike Silva November 12, 2013

Too Many Buttons, Not Enough Inputs

Assigning one GPIO input to each button can use up a lot of GPIO pins.  Numeric input requires at least 10 buttons, plus however many additional control or function buttons.  This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be.  A very common response to this expense is to wire buttons (keys, etc) in a matrix.  By connecting our buttons in an...


Cracking the (embedded) Coding Interview

Manasi Rajan March 23, 2023

You never forget the day you land your first job. 

The thrill of receiving that call from your recruiter to tell you that you bagged your dream role! The relief when you finally see the offer letter you’ve been working towards for years. The pride in your parents' voices when you call home and say “Hey look Ma, I’ve made it!”

But before that, there’s the grueling screening process to get through. Tech interviews often last up to three months and companies can have five...


BGA and QFP at Home 1 - A Practical Guide.

Victor Yurkovsky October 13, 20134 comments

It is almost universally accepted by the hobbyists that you can't work with high-density packages at home.  That is entirely incorrect.  I've been assembling and reflowing BGA circuit boards at home for a few years now.  BGAs and 0.5mm-pitch QFPs are well within the realm of a determined amateur. 

This series of articles presents practical information on designing and assembling boards with high-density packages at home.  While the focus is on FPGA packages, most of...


Which MOSFET topology?

Jason Sachs September 1, 20119 comments

A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:

From left to right, these are:

High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...

Imagine Conference