Using GPIO in (Apache) NuttX RTOS
In the previous article (https://embeddedrelated.com/showarticle/1610.php) we saw how to compile and run NuttX on three low cost boards (RaspberryPi Pico, ESP32-Devkit and STM32F4Discovery). Today we will see how to use GPIO pins and read and write logic level signals from/to the MCU pins.
Everybody knows that blinking a LED is the "Hello World" program of embedded system engineer. Controlling a GPIO we can do exactly that! Although it is important to know that NuttX...
A Sneak Peek at the 2024 Embedded Online Conference
The embedded systems industry is evolving at a rapid pace. Just a few years ago, most embedded products were disconnected systems that used bare-metal scheduling techniques. Today, the drive to connect devices and add intelligence at the edge is revolutionizing how we build embedded products. The only way to stay current and not get left behind is to learn and network with colleagues and industry experts continuously.
This year, the 2024 Embedded Online Conference is...
The Asimov Protocol
While the Internet is choke-full of explanations of basic data communication protocols, very little is said about the higher levels of packing, formatting, and exchanging information in a useful and practical way. This less-charted land is still fraught with strange problems, whose solutions may be found in strange places – in this example, a very short, 60 years old Science Fiction story.
Ten Little Algorithms, Part 7: Continued Fraction Approximation
In this article we explore the use of continued fractions to approximate any particular real number, with practical applications.
Embedded Developer’s New Year’s Resolution
As we reach the end of another year, while wrapping up this one, we also contemplate the year ahead. Though nothing major might change on the 1st of January, it’s nice to pause during the holidays to reflect on the past and plan for future improvements.
I like to plan my professional improvements, and I always include them in my New Year’s resolution. Here are some ideas that I’d like to share.
Good Software Design PracticesYes, we Embedded developers love...
Remember Y2K?
There was fear that the turn of the century at the end of 1999 would cause problems with many embedded systems. There is evidence that the same issue may occur in 2038.
Getting Started With Zephyr: Writing Data to EEPROM
In this blog post, I show how to implement a Zephyr application to interact with EEPROM. I show how the Zephyr device driver model allows application writers to be free of the underlying implementation details. Unfortunately, the application didn't work as expected, and I'm still troubleshooting the cause.
My TDD Journey Started Dec 6, 1999
My story of learning Test-Driven Development started 23 years ago today. TDD has helped me exercise my code well before there is target hardware to run on. TDD helps me prevent defects. It can help you too.
More than just a pretty face - a good UI is essential
A user interface can make or break a device - determining its success in the marketplace. With careful design, the UI can make the product compelling and result in a high level of satisfaction from new and experienced users.
Getting Started with NuttX RTOS on Three Low Cost Boards
If you are an embedded system developer chances are you already played with Linux on some embedded board and saw how it is powerful, right?
So, I have a good news: you can have same power using NuttX on some ultra low cost board powered by a microcontroller instead of microprocessor (that normally is way more expansive).
In fact many companies already realized it before me. It explains why NuttX is the kernel used by many IoT frameworks:
Another great news is that few days ago...
Important Programming Concepts (Even on Embedded Systems) Part V: State Machines
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part VI: Abstraction
Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.
Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...
Lost Secrets of the H-Bridge, Part I: Ripple Current in Inductive Loads
So you think you know about H-bridges? They're something I mentioned in my last post about signal processing with Python.
Here we have a typical H-bridge with an inductive load. (Mmmmm ahhh! It's good to draw by hand every once in a while!) There are four power switches: QAH and QAL connecting node A to the DC link, and QBH and QBL connecting node B to the DC link. The load is connected between nodes A and B, and here is represented by an inductive load in series with something else. We...
VHDL tutorial - part 2 - Testbench
In an earlier article I walked through the VHDL coding of a simple design. In this article I will continue the process and create a test bench module to test the earlier design. The Xilinx ISE environment makes it pretty easy to start the testing process. To start the process, select "New Source" from the menu items under "Project". This launches the "New Source Wizard". From within the Wizard select "VHDL Test Bench" and enter the name of the new module (click 'Next' to...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 5)
In this article we’re going to take a look at cycle time, queues, and inventory. Cycle time is a manufacturing term — for anything, not just semiconductors — meaning how long it takes for an individual product to make its way through a manufacturing process, from start to finish. We’re going to try to understand how long it takes to manufacture semiconductors. In particular, we’re going to try to answer these questions:
- How long does it take...
VHDL tutorial - A practical example - part 1 - Hardware
In previous posts I described some simple VHDL examples. This time let's try something a little more complex. This is part one of a multiple part article. This is intended to be a detailed description of one of several initial designs that I developed for a client. This design never made it into a product, but a similar design was used and is currently being produced. As a considerable amount of work was put into this effort, I decided to share this design...
Mastering Modern FPGA Skills for Engineers
In the rapidly evolving tech industry, engineers must acquire proficiency in modern FPGA skills. These skills empower engineers to optimize designs, minimize resource usage, and efficiently address FPGA design challenges while ensuring functionality, security, and compliance.
Padé Delay is Okay Today
This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.
Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:
Impressed? Maybe you should be. This...
Better Hardware Design Decisions, Faster: A Lean Team’s Guide to MDO
As design complexity grows, siloed decision-making often leads to late-stage surprises, costly rework, and missed opportunities for optimization. Multidisciplinary Design Optimization (MDO) offers a structured approach to solving this by enabling teams to evaluate trade-offs and impacts across the full system—before implementation begins. Traditionally used in large, high-budget industries like aerospace, MDO is now within reach for lean teams, thanks to more accessible modeling tools and an urgent need for tighter collaboration. This article outlines how small hardware teams can adopt MDO in a practical way—starting simple, integrating key models early, and building toward a culture of systems thinking. The result is better design decisions, faster development, and more robust, manufacturable products—with fewer surprises along the way.
Second-Order Systems, Part I: Boing!!
I’ve already written about the unexciting (but useful) 1st-order system, and about slew-rate limiting. So now it’s time to cover second-order systems.
The most common second-order systems are RLC circuits and spring-mass-damper systems.
Spring-mass-damper systems are fairly common; you’ve seen these before, whether you realize it or not. One household example of these is the spring doorstop (BOING!!):
(For what it’s worth: the spring...
Modeling Gate Drive Diodes
This is a short article about how to analyze the diode in some gate drive circuits when figuring out turn-off characteristics --- specifically, determining the relationship between gate drive current and gate voltage during turn-off of a power transistor.
Slew Rate Limiters: Nonlinear and Proud of It!
I first learned about slew rate limits when I was in college. Usually the subject comes up when talking about the nonideal behavior of op-amps. In order for the op-amp output to swing up and down quickly, it has to charge up an internal capacitor with a transistor circuit that’s limited in its current capability. So the slew rate limit \( \frac{dV}{dt} = \frac{I_{\rm max}}{C} \). And as long as the amplitude and frequency aren’t too high, you won’t notice it. But try to...
Coding Step 1 - Hello World and Makefiles
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
Step 0 discussed how to install GCC and the make utility with the expectation of writing and compiling your first C program. In this article, I discuss how to use those tools we installed last time. Specifically, how to use GCC to compile a C program and...
Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
Important Programming Concepts (Even on Embedded Systems) Part II: Immutability
Other articles in this series:
- Part I: Idempotence
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines
- Part VI: Abstraction
This article will discuss immutability, and some of its variations in the topic of functional programming.
There are a whole series of benefits to using program variables that… well, that aren’t actually variable, but instead are immutable. The impact of...
Arduino robotics #4 - HC-SR04 ultrasonic sensor
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.How to use I2C devices in (Apache) NuttX: Scanning for Devices
Previously in this EmbeddedRelated article, we saw how to use Buttons Subsystem on NuttX using a RaspberryPi Pico board. Now we will change from user input device (buttons) for something more generic: I2C protocol. NuttX supports a lot of I2C devices (sensors, displays, EEPROMs, I/O Expanders, I2C multiplexers, and many more). And most important: because NuttX is a Linux-like RTOS you will find the very familiar i2ctool to search for devices in your I2C bus. So, lets to get...
Embedded Systems Roadmaps
What skills should every embedded systems engineer have? What should you study next to improve yourself as an embedded systems engineer? In this article I'll share with you a few lists from well-respected sources that seek to answer these questions, with the hope of helping provide you a path to mastery. Whether you've only just finished your first Arduino project or you've been building embedded systems for decades, I believe there's something in here for everyone to help improve themselves as embedded systems engineers.
Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of the waveform they were sampled from.
Free Goodies from Embedded World - What to Do Next?
I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.
Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...