EmbeddedRelated.com

Elliptic Curve Cryptography - Multiple Signatures

Mike November 19, 2023

The use of point pairing becomes very useful when many people are required to sign one document. This is typical in a contract situation when several people are agreeing to a set of requirements. If we used the method described in the blog on signatures, each person would sign the document, and then the verification process would require checking every single signature. By using pairings, only one check needs to be performed. The only requirement is the ability to verify the...


Flood Fill, or: The Joy of Resource Constraints

Ido Gendel November 13, 2023

When transferred from the PC world to a microcontroller, a famous, tried-and-true graphics algorithm is no longer viable. The challenge of creating an alternative under severe resource constraints is an intriguing puzzle, the kind that keeps embedded development fun and interesting.


Elliptic Curve Cryptography - Extension Fields

Mike October 29, 2023

An introduction to the pairing of points on elliptic curves. Point pairing normally requires curves over an extension field because the structure of an elliptic curve has two independent sets of points if it is large enough. The rules of pairings are described in a general way to show they can be useful for verification purposes.


Elliptic Curve Cryptography - Key Exchange and Signatures

Mike October 21, 2023

Elliptic curve mathematics over finite fields helps solve the problem of exchanging secret keys for encrypted messages as well as proving a specific person signed a particular document. This article goes over simple algorithms for key exchange and digital signature using elliptic curve mathematics. These methods are the essence of elliptic curve cryptography (ECC) used in applications such as SSH, TLS and HTTPS.


Elliptic Curve Cryptography - Security Considerations

Mike October 16, 2023

The security of elliptic curve cryptography is determined by the elliptic curve discrete log problem. This article explains what that means. A comparison with real number logarithm and modular arithmetic gives context for why it is called a log problem.


Elliptic Curve Cryptography - Basic Math

Mike October 10, 2023

An introduction to the math of elliptic curves for cryptography. Covers the basic equations of points on an elliptic curve and the concept of point addition as well as multiplication.


Square root in fixed point VHDL

Jari Honkanen October 10, 2023

In this blog we will design and implement a fixed point square root function in VHDL. The algorithm is based on the recursive Newton Raphson inverse square root algorithm and the implementation offers parametrizable pipeline depth, word length and the algorithm is built with VHDL records and procedures for easy use.


Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction

Jason Sachs June 12, 2018

Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.

This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.

Ernie, You Have a Banana in Your Ear

I have had a really really tough time writing this article. I like the...


Linear Regression with Evenly-Spaced Abscissae

Jason Sachs May 1, 20181 comment

What a boring title. I wish I could come up with something snazzier. One word I learned today is studentization, which is just the normalization of errors in a curve-fitting exercise by the sample standard deviation (e.g. point \( x_i \) is \( 0.3\hat{\sigma} \) from the best-fit linear curve, so \( \frac{x_i - \hat{x}_i}{\hat{\sigma}} = 0.3 \)) — Studentize me! would have been nice, but I couldn’t work it into the topic for today. Oh well.

I needed a little break from...


Linear Feedback Shift Registers for the Uninitiated, Part XI: Pseudorandom Number Generation

Jason Sachs December 20, 2017

Last time we looked at the use of LFSRs in counters and position encoders.

This time we’re going to look at pseudorandom number generation, and why you may — or may not — want to use LFSRs for this purpose.

But first — an aside:

Science Fair 1983

When I was in fourth grade, my father bought a Timex/Sinclair 1000. This was one of several personal computers introduced in 1982, along with the Commodore 64. The...


Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Jason Sachs April 27, 201516 comments

Other articles in this series:

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...


Ten Little Algorithms, Part 1: Russian Peasant Multiplication

Jason Sachs March 21, 20156 comments

This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.

Other articles in this series:

  • Part 1:

From Baremetal to RTOS: A review of scheduling techniques

Jacob Beningo June 8, 201617 comments

Transitioning from bare-metal embedded software development to a real-time operating system (RTOS) can be a difficult endeavor. Many developers struggle with the question of whether they should use an RTOS or simply use a bare-metal scheduler. One of the goals of this series is to walk developers through the transition and decision making process of abandoning bare-metal thinking and getting up to speed quickly with RTOSes. Before diving into the details of RTOSes, the appropriate first step...


Ten Little Algorithms, Part 4: Topological Sort

Jason Sachs July 5, 20151 comment

Other articles in this series:

Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...


Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

Jason Sachs November 11, 20159 comments

Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of the waveform they were sampled from.


Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Jason Sachs June 18, 20173 comments

Other articles in this series:

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...


Practical CRCs for Embedded Systems

Stephen Friederichs October 20, 20157 comments

CRCs are a very practical tool for embedded systems: you're likely to need to use one as part of a communications protocol or to verify the integrity of a program image before writing it to flash. But CRCs can be difficult to understand and tricky to implement. The first time I attempted to write CRC code from scratch I failed once. Then twice. Then three times. Eventually I gave up and used an existing library. I consider myself intelligent: I got A's...


Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer

Jason Sachs November 13, 20171 comment

The last four articles were on algorithms used to compute with finite fields and shift registers:

Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.


Elliptic Curve Cryptography

Mike November 16, 20156 comments

Secure online communications require encryption. One standard is AES (Advanced Encryption Standard) from NIST. But for this to work, both sides need the same key for encryption and decryption. This is called Private Key encryption.