Elliptic Curve Cryptography - Multiple Signatures
The use of point pairing becomes very useful when many people are required to sign one document. This is typical in a contract situation when several people are agreeing to a set of requirements. If we used the method described in the blog on signatures, each person would sign the document, and then the verification process would require checking every single signature. By using pairings, only one check needs to be performed. The only requirement is the ability to verify the...
Flood Fill, or: The Joy of Resource Constraints
When transferred from the PC world to a microcontroller, a famous, tried-and-true graphics algorithm is no longer viable. The challenge of creating an alternative under severe resource constraints is an intriguing puzzle, the kind that keeps embedded development fun and interesting.
Elliptic Curve Cryptography - Extension Fields
An introduction to the pairing of points on elliptic curves. Point pairing normally requires curves over an extension field because the structure of an elliptic curve has two independent sets of points if it is large enough. The rules of pairings are described in a general way to show they can be useful for verification purposes.
Elliptic Curve Cryptography - Key Exchange and Signatures
Elliptic curve mathematics over finite fields helps solve the problem of exchanging secret keys for encrypted messages as well as proving a specific person signed a particular document. This article goes over simple algorithms for key exchange and digital signature using elliptic curve mathematics. These methods are the essence of elliptic curve cryptography (ECC) used in applications such as SSH, TLS and HTTPS.
Elliptic Curve Cryptography - Security Considerations
The security of elliptic curve cryptography is determined by the elliptic curve discrete log problem. This article explains what that means. A comparison with real number logarithm and modular arithmetic gives context for why it is called a log problem.
Elliptic Curve Cryptography - Basic Math
An introduction to the math of elliptic curves for cryptography. Covers the basic equations of points on an elliptic curve and the concept of point addition as well as multiplication.
Square root in fixed point VHDL
In this blog we will design and implement a fixed point square root function in VHDL. The algorithm is based on the recursive Newton Raphson inverse square root algorithm and the implementation offers parametrizable pipeline depth, word length and the algorithm is built with VHDL records and procedures for easy use.
Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction
Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.
This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.
Ernie, You Have a Banana in Your EarI have had a really really tough time writing this article. I like the...
Linear Regression with Evenly-Spaced Abscissae
What a boring title. I wish I could come up with something snazzier. One word I learned today is studentization, which is just the normalization of errors in a curve-fitting exercise by the sample standard deviation (e.g. point \( x_i \) is \( 0.3\hat{\sigma} \) from the best-fit linear curve, so \( \frac{x_i - \hat{x}_i}{\hat{\sigma}} = 0.3 \)) — Studentize me! would have been nice, but I couldn’t work it into the topic for today. Oh well.
I needed a little break from...
Linear Feedback Shift Registers for the Uninitiated, Part XI: Pseudorandom Number Generation
Last time we looked at the use of LFSRs in counters and position encoders.
This time we’re going to look at pseudorandom number generation, and why you may — or may not — want to use LFSRs for this purpose.
But first — an aside:
Science Fair 1983When I was in fourth grade, my father bought a Timex/Sinclair 1000. This was one of several personal computers introduced in 1982, along with the Commodore 64. The...
Flood Fill, or: The Joy of Resource Constraints
When transferred from the PC world to a microcontroller, a famous, tried-and-true graphics algorithm is no longer viable. The challenge of creating an alternative under severe resource constraints is an intriguing puzzle, the kind that keeps embedded development fun and interesting.
Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...
Square root in fixed point VHDL
In this blog we will design and implement a fixed point square root function in VHDL. The algorithm is based on the recursive Newton Raphson inverse square root algorithm and the implementation offers parametrizable pipeline depth, word length and the algorithm is built with VHDL records and procedures for easy use.
Elliptic Curve Cryptography - Multiple Signatures
The use of point pairing becomes very useful when many people are required to sign one document. This is typical in a contract situation when several people are agreeing to a set of requirements. If we used the method described in the blog on signatures, each person would sign the document, and then the verification process would require checking every single signature. By using pairings, only one check needs to be performed. The only requirement is the ability to verify the...
Ten Little Algorithms, Part 3: Welford's Method (and Friends)
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Last time we talked about a low-pass filter, and we saw that a one-line...
Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of the waveform they were sampled from.
From Baremetal to RTOS: A review of scheduling techniques
Transitioning from bare-metal embedded software development to a real-time operating system (RTOS) can be a difficult endeavor. Many developers struggle with the question of whether they should use an RTOS or simply use a bare-metal scheduler. One of the goals of this series is to walk developers through the transition and decision making process of abandoning bare-metal thinking and getting up to speed quickly with RTOSes. Before diving into the details of RTOSes, the appropriate first step...
Elliptic Curve Cryptography - Basic Math
An introduction to the math of elliptic curves for cryptography. Covers the basic equations of points on an elliptic curve and the concept of point addition as well as multiplication.
Ten Little Algorithms, Part 1: Russian Peasant Multiplication
This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.
Other articles in this series:
- Part 1:
Elliptic Curve Cryptography - Key Exchange and Signatures
Elliptic curve mathematics over finite fields helps solve the problem of exchanging secret keys for encrypted messages as well as proving a specific person signed a particular document. This article goes over simple algorithms for key exchange and digital signature using elliptic curve mathematics. These methods are the essence of elliptic curve cryptography (ECC) used in applications such as SSH, TLS and HTTPS.
Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...
Ten Little Algorithms, Part 1: Russian Peasant Multiplication
This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.
Other articles in this series:
- Part 1:
Ten Little Algorithms, Part 3: Welford's Method (and Friends)
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Last time we talked about a low-pass filter, and we saw that a one-line...
From Baremetal to RTOS: A review of scheduling techniques
Transitioning from bare-metal embedded software development to a real-time operating system (RTOS) can be a difficult endeavor. Many developers struggle with the question of whether they should use an RTOS or simply use a bare-metal scheduler. One of the goals of this series is to walk developers through the transition and decision making process of abandoning bare-metal thinking and getting up to speed quickly with RTOSes. Before diving into the details of RTOSes, the appropriate first step...
Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of the waveform they were sampled from.
Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...
Practical CRCs for Embedded Systems
CRCs are a very practical tool for embedded systems: you're likely to need to use one as part of a communications protocol or to verify the integrity of a program image before writing it to flash. But CRCs can be difficult to understand and tricky to implement. The first time I attempted to write CRC code from scratch I failed once. Then twice. Then three times. Eventually I gave up and used an existing library. I consider myself intelligent: I got A's...
Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer
The last four articles were on algorithms used to compute with finite fields and shift registers:
- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output
Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.
Elliptic Curve Cryptography
Secure online communications require encryption. One standard is AES (Advanced Encryption Standard) from NIST. But for this to work, both sides need the same key for encryption and decryption. This is called Private Key encryption.