EmbeddedRelated.com

What does it mean to be 'Turing complete'?

Nathan Jones October 16, 20235 comments

The term "Turing complete" describes all computers and even some things we don't expect to be as powerful as a typical computer. In this article, I describe what it means and discuss the implications of Turing completeness on projects that need just a little more power, on alternative processor designs, and even security.


Elliptic Curve Cryptography - Security Considerations

Mike October 16, 2023

The security of elliptic curve cryptography is determined by the elliptic curve discrete log problem. This article explains what that means. A comparison with real number logarithm and modular arithmetic gives context for why it is called a log problem.


Handling Translations in an Embedded Project

Mattia Maldini October 13, 20234 comments

A brief walkthrough on how to handle human language translations in a low level C application. Some options are listed, each with advantages and disadvantages laid out.


Elliptic Curve Cryptography - Basic Math

Mike October 10, 2023

An introduction to the math of elliptic curves for cryptography. Covers the basic equations of points on an elliptic curve and the concept of point addition as well as multiplication.


Square root in fixed point VHDL

Jari Honkanen October 10, 20231 comment

In this blog we will design and implement a fixed point square root function in VHDL. The algorithm is based on the recursive Newton Raphson inverse square root algorithm and the implementation offers parametrizable pipeline depth, word length and the algorithm is built with VHDL records and procedures for easy use.


Mastering Modern FPGA Skills for Engineers

Lance Harvie October 5, 2023

In the rapidly evolving tech industry, engineers must acquire proficiency in modern FPGA skills. These skills empower engineers to optimize designs, minimize resource usage, and efficiently address FPGA design challenges while ensuring functionality, security, and compliance.


Open-Source Licenses Made Easy with Buildroot and Yocto for Embedded Linux

George Emad October 2, 2023

In this article I will try to explain what are the copyrights/copyleft, what are the popular opensource software licenses, and how to make sure that your Embedded Linux system complies with them using popular build systems ; Buildroot or YOCTO projec


There are 10 kinds of people in the world

Colin Walls September 27, 2023

It is useful, in embedded software, to be able to specify values in binary. The C language lacks this facility. In this blog we look at how to fix that.


Getting Started With Zephyr: Devicetree Overlays

Mohammed Billoo September 25, 2023

In this blog post, I show how the Devicetree overlay is a valuable construct in The Zephyr Project RTOS. Overlays allow embedded software engineers to override the default pin configuration specified in Zephyr for a particular board. In this blog post, I use I2C as an example. Specifically, I showed the default I2C pins used for the nRF52840 development kit in the nominal Zephyr Devicetree. Then, I demonstrated how an overlay can be used to override this pin configuration and the final result.


Embedded Developers, Ditch Your IDEs – Here’s Why!

Amar Mahmutbegovic September 25, 20231 comment

Ditching your Integrated Development Environment (IDE) temporarily can be a transformative learning experience in embedded development. This post invites you to explore the underpinnings of IDEs by delving into alternative tools and processes like Makefile, CMake, Vim, GDB, and OpenOCD. Understanding these tools can demystify the background operations of IDEs, revealing the intricacies of compiling, linking, and debugging. This journey into the “under the hood” aspects of development is not just about learning new tools, but also about gaining a deeper appreciation for the convenience and efficiency that IDEs provide. By stepping out of your comfort zone and experimenting with these alternatives, you can sharpen your skills, enhance your knowledge, and possibly discover a more tailored and streamlined development experience. Whether you're a novice or a seasoned developer, this exploration promises insights and revelations that can elevate your embedded development journey.


Introduction to Microcontrollers - 7-segment displays & Multiplexing

Mike Silva August 14, 20141 comment

Doing the 7 Segment Shuffle

The 7 segment display is ubiquitous in the modern world.  Just about every digital clock, calculator and movie bomb has one.  The treadmills at my gym have 6 or 7, each one displaying 3 or 4 digits.  What makes the 7-seg interesting is that it presents an opportunity to make a trade off between GPIO (output pins) for time.  Every 7-seg display requires 8 outputs (the 7 segments and usually either a decimal point or a...


Cortex-M Exception Handling (Part 1)

Ivan Cibrario Bertolotti November 28, 20152 comments

This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems.


Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons

Jason Sachs November 11, 20142 comments

Other articles in this series:

Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but


Linear Feedback Shift Registers for the Uninitiated, Part I: Ex-Pralite Monks and Finite Fields

Jason Sachs July 3, 20176 comments

Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.

— Évariste Galois, May 29, 1832

I was going to call this short series of articles “LFSRs for Dummies”, but thought better of it. What is a linear feedback shift register? If you want the short answer, the Wikipedia article is a decent introduction. But these articles are aimed at those of you who want a little bit deeper mathematical...


Lost Secrets of the H-Bridge, Part III: Practical Issues of Inductor and Capacitor Ripple Current

Jason Sachs August 24, 20133 comments

We've been analyzing the ripple current in an H-bridge, both in an inductive load and the DC link capacitor. Here's a really quick recap; if you want to get into more details, go back and read part I and part II until you've got equations coming out of your ears. I promise there will be a lot less grungy math in this post. So let's get most of it out of the way:

Switches QAH and QAL are being turned on and off with pulse-width modulation (PWM), to produce an average voltage DaVdc on...


Lost Secrets of the H-Bridge, Part I: Ripple Current in Inductive Loads

Jason Sachs July 8, 2013

So you think you know about H-bridges? They're something I mentioned in my last post about signal processing with Python.

Here we have a typical H-bridge with an inductive load. (Mmmmm ahhh! It's good to draw by hand every once in a while!) There are four power switches: QAH and QAL connecting node A to the DC link, and QBH and QBL connecting node B to the DC link. The load is connected between nodes A and B, and here is represented by an inductive load in series with something else. We...


Visual Studio Code Extensions for Embedded Software Development

Jacob Beningo March 22, 20238 comments

Visual Studio Code has become one of the most popular IDEs in the world. To date, software developers have downloaded it more than 40 million times! I suspect you’ve at least heard of it, if not already attempting to use it. Visual Studio Code allows developers to easily customize their development environment which can help them accelerate development, minimize bugs, and make developing software overall much better.

One challenge with Visual Studio Code is that embedded software...


Introduction to Microcontrollers - More On Interrupts

Mike Silva September 25, 2013

A Little More Detail About The Interrupt Mechanism

It's time to look a little closer at what happens in an interrupt request and response.  Again this is in general terms, and different microcontroller designs may do things somewhat differently, but the basics remain the same.  Most but not all interrupt requests are latched, which means the interrupt event sets a flag that stays set even if the interrupt event then goes away.  It is this latched flag...


Delayed printf for real-time logging

Yossi Kreinin October 25, 20133 comments

You often debug by adding a few printfs and looking at the logs. In some real-time/low-level contexts though, you don't have time for text formatting.

You don't want prints to affect timing too much, because then timing-related bugs you're chasing might disappear. And you certainly don't want the system to stop functioning altogether because prints cause it to miss real-time deadlines.

A common alternative to prints is more "raw" logging - an event buffer, where event is a union keeping...


R1C1R2C2: The Two-Pole Passive RC Filter

Jason Sachs July 28, 20181 comment

I keep running into this circuit every year or two, and need to do the same old calculations, which are kind of tiring. So I figured I’d just write up an article and then I can look it up the next time.

This is a two-pole passive RC filter. Doesn’t work as well as an LC filter or an active filter, but it is cheap. We’re going to find out a couple of things about its transfer function.

First let’s find out the transfer function of this circuit:

Not very...