OOKLONE: a cheap RF 433.92MHz OOK frame cloner
IntroductionA few weeks ago, I bought a set of cheap wireless outlets and reimplemented the protocol for further inclusion in a domotics platform. I wrote a post about it here:
//www.embeddedrelated.com/showarticle/620.php
Following that, I had access to another outlet from a different vendor:
http://www.castorama.fr/store/Prise-telecommandee-BLYSS---Interieur-prod4470027.html
The device documentation mentions that it operates on the same frequency as the previous...
Reverse engineering wireless wall outlets
IntroductionI am improving the domotics framework that I described in a previous article://www.embeddedrelated.com/showarticle/605.php
I want to support wireless wall outlets, allowing me to switch devices power from a remote location over HTTP.
To do so, I could design my own wireless wall outlets and use a hardware similar to the previous one, based on the NRF905 chipset. The problem is that such a product would not be certified, and that would be an issue regarding the home insurance,...
A wireless door monitor based on the BANO framework
IntroductionI have been thinking for a while about a system to monitor the states of my flat and my garage doors from a remote place. Functionnaly, I wanted to monitor the state of my doors from a remote place. A typical situation is when I leave for holidays, but it can also be useful from the work office. To do so, I would centralize the information on a server connected on the Internet that I could query using a web browser. The server itself would be located in the appartement, where...
Using a RTLSDR dongle to validate NRF905 configuration
I am currently working on a system to monitor the garage door status from my flat. Both places are 7 floors apart, and I need to send the data wirelessly. I chose to operate on the 433MHz carrier, and I ordered 2 PTR8000 modules: http://www.electrodragon.com/w/NRF905_Transceiver_433MHz-Wireless_ModuleThe PTR8000 is based on the dual band sub 1GHz NRF905 chipset from NORDICSEMI: http://www.nordicsemi.com/eng/Products/Sub-1-GHz-RF/nRF905I...How to Arduino - a video toolbox
I've begun producing a new series of video tutorials for the hobbyist new to the Arduino or microcontrollers in general. My videos are very pragmatic - I prefer to answer the question "what is the quickest, simplest and most affordable way to accomplish this?". The videos are meant to be a quick source of "how to" knowledge for the hobbyist that is using an LCD display, ultrasonic sensor or accelerometer for the first time, for example. I hope you enjoy this series of...
Introduction to Microcontrollers - Driving WS2812 RGB LEDs
This tutorial chapter is a bit of a detour, but I think an interesting and useful one. It introduces a bit of assembly language programming, and demonstrates bit-banging a tight serial data protocol. And it deals with RGB LEDs, which are just very fun in their own right, especially these new parts. So I thought I'd post this to give readers time for some holiday lighting experimenting.
Back To The FutureRemember how we started this...
Introduction to Microcontrollers - Button Matrix & Auto Repeating
Too Many Buttons, Not Enough InputsAssigning one GPIO input to each button can use up a lot of GPIO pins. Numeric input requires at least 10 buttons, plus however many additional control or function buttons. This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be. A very common response to this expense is to wire buttons (keys, etc) in a matrix. By connecting our buttons in an...
Energia - program a TI MSP430 using Arduino sketches
TI MSP430 LaunchpadI started tinkering with microcontroller a couple of years ago with an Arduino Uno. I had a little experience with C, so programming in the Arduino environment has been relatively easy and straightforward for me. My code is not necessarily elegant or efficient, but I can usually figure out how to make an Arduino do what I want it to do eventually. A lot of credit to the Arduino userbase, as it is very easy to figure most things out with a quick Google...
Embedded Systems - free EdX course by UT-Austin!
I was very excited to see that there will be an Embedded Systems class available for free at https://www.edx.org/course/utaustin/ut-6-01x/embedded-systems-shape-world/1172
It's free to sign up and take the online class at the EdX website.
More exciting is that the class is based on a TI Launchpad Tiva microcontroller development board. The Tiva Launchpad features an 80-MHz ARM Cortex M-4 MCU with 256 KB of flash storage, 32 KB of RAM and 43 general purpose I/O pins.
Introduction to Microcontrollers - Buttons and Bouncing
What Is A Button?To your hardware, that is. As discussed in Introduction to Microcontrollers - More On GPIO, a button (or key, or switch, or any form of mechanical contact) is generally hooked up to a microcontroller so as to generate a certain logic level when pushed or closed or "active," and the opposite logic level when unpushed or open or "inactive." The active logic level can be either '0' or '1', but for reasons both historical and electrical, an...
Trust, but Verify: Examining the Output of an Embedded Compiler
I work with motor control firmware on the Microchip dsPIC33 series of microcontrollers. The vast majority of that firmware is written in C, with only a few percent in assembly. And I got to thinking recently: I programmed in C and C++ on an Intel PC from roughly 1991 to 2009. But I don’t remember ever working with x86 assembly code. Not once. Not even reading it. Which seems odd. I do that all the time with embedded firmware. And I think you should too. Before I say why, here are...
OOKLONE: a cheap RF 433.92MHz OOK frame cloner
IntroductionA few weeks ago, I bought a set of cheap wireless outlets and reimplemented the protocol for further inclusion in a domotics platform. I wrote a post about it here:
//www.embeddedrelated.com/showarticle/620.php
Following that, I had access to another outlet from a different vendor:
http://www.castorama.fr/store/Prise-telecommandee-BLYSS---Interieur-prod4470027.html
The device documentation mentions that it operates on the same frequency as the previous...
From bare-metal to RTOS: 5 Reasons to use an RTOS
Developers can come up with amazing and convoluted reasons to not use an RTOS. I have heard excuses ranging from they are too expensive (despite open source solutions) all the way to they aren’t efficient and use too much memory. In some circumstances some excuses are justified but there are many reasons why a developer should look to an RTOS to help with their real-time scheduling needs.
From bare-metal to RTOS Quick LinksIntroduction to Microcontrollers - Further Beginnings
Embedded Programming BasicsThis tutorial entry will discuss some further embedded programming basics that you will need to understand before proceeding on to the LED blinky and other example programs. We will do this by looking at the general organization and types of instructions found in most microcontrollers, and how that organization and those instructions are reflected (or, in some cases, ignored) by the C programming language.
Basic CPU...Introduction to Microcontrollers - More On Interrupts
A Little More Detail About The Interrupt MechanismIt's time to look a little closer at what happens in an interrupt request and response. Again this is in general terms, and different microcontroller designs may do things somewhat differently, but the basics remain the same. Most but not all interrupt requests are latched, which means the interrupt event sets a flag that stays set even if the interrupt event then goes away. It is this latched flag...
Arduino robotics #4 - HC-SR04 ultrasonic sensor
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Getting Started With Zephyr: Kconfig
In this blog post, we briefly look at Kconfig, one of the core pieces of the Zephyr infrastructure. Kconfig allows embedded software developers to turn specific subsystems on or off within Zephyr efficiently and control their behavior. We also learn how we can practically use Kconfig to control the features of our application using the two most common mechanisms.
Introduction to Microcontrollers - Adding Some Real-World Hardware
When 2 LEDs Just Don't Cut It AnymoreSo far, we've done everything in this series using two LEDs and one button. I'm guessing that the thrill of blinking an LED has worn off by now, hard as that is to imagine. What's more, we've just about reached the limits of what we can learn with such limited I/O. We have come to the point where we need to add some hardware to our setup to continue with additional concepts and microcontroller...
Reverse engineering wireless wall outlets
IntroductionI am improving the domotics framework that I described in a previous article://www.embeddedrelated.com/showarticle/605.php
I want to support wireless wall outlets, allowing me to switch devices power from a remote location over HTTP.
To do so, I could design my own wireless wall outlets and use a hardware similar to the previous one, based on the NRF905 chipset. The problem is that such a product would not be certified, and that would be an issue regarding the home insurance,...
Arduino robotics #2 - chassis, locomotion and power
Arduino RoboticsBeginner robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Working with Microchip PIC 8-bit GPIO
The third in a series of five posts looks at GPIO with PIC 8-bit microcontrollers. After a detailed review of the registers for configuring and managing GPIO on the PIC18F47Q10 processor, a basic application is stood up programming those registers to blink external LEDs at 0.5Hz.
Improving the Reload2 active load
IntroductionWith another colleague at work, we are currently developing an electronic board that will eventually be powered over Ethernet. To gain more experience with this technology, we prototyped a standalone power supply stage.
We want to test this stage with different load profiles. While we already have professional grade active loads at work, I had previously read about the Reload2 product from Arachnidlabs, a low cost active load sold on Hackaday:
Understanding Microchip 8-bit PIC Configuration
The second post of a five part series picks up getting started developing with Microchip 8-bit PIC Microcontroller by examining the how and why of processor configuration. Topics discussed include selecting the oscillator to use during processor startup and refining the configuration once the application starts. A walk through of the code generated by the Microchip IDE provides a concrete example of the specific Configuration Word and SFR values needed to configure the project specific clock configuration.
Embedded Systems - free EdX course by UT-Austin!
I was very excited to see that there will be an Embedded Systems class available for free at https://www.edx.org/course/utaustin/ut-6-01x/embedded-systems-shape-world/1172
It's free to sign up and take the online class at the EdX website.
More exciting is that the class is based on a TI Launchpad Tiva microcontroller development board. The Tiva Launchpad features an 80-MHz ARM Cortex M-4 MCU with 256 KB of flash storage, 32 KB of RAM and 43 general purpose I/O pins.
nRF5 to nRF Connect SDK migration via DFU over BLE
This writeup contains some notes on how I was able to migrate one of my clients projects based on the nRF5 SDK, to nRF Connect SDK (NCS) based firmware, via a DFU to devices in the field over BLE.
Simulating Your Embedded Project on Your Computer (Part 2)
Having a simulation of your embedded project is like having a superpower that improves the quality and pace of your development ten times over! To be useful, though, it can't take longer to develop the simulation than it takes to develop the application code and for many simulation techniques "the juice isn't worth the squeeze"! In the last article, I showed you how to use the terminal (i.e. printf/getchar) to easily make a completely functional simulation. In this article, we'll take simulation to the next level, either in terms of realism (by using virtual hardware) or in terms of user experience (by using a GUI to simulate our hardware, instead of using the terminal).
What does it mean to be 'Turing complete'?
The term "Turing complete" describes all computers and even some things we don't expect to be as powerful as a typical computer. In this article, I describe what it means and discuss the implications of Turing completeness on projects that need just a little more power, on alternative processor designs, and even security.
Introduction to Deep Insight Analysis for RTOS Based Applications
Over the past several years, embedded systems have become extremely complex. As systems become more complex, they become harder and more time consuming to debug. It isn’t uncommon for development teams to spend more than 40% development cycle time just debugging their systems. This is where deep insight analysis has the potential to dramatically decrease costs and time to market.
Defining Deep Insight Analysis
Deep insight analysis is a set of tools and techniques that can be...
STM32 VS Code Extension Under The Hood
VS Code is becoming the "go to" environment for many developers. Increasingly, toolchain providers are publishing VS Code extensions and ST has recently followed suit. Additionally, CMake is significantly growing in popularity, with many projects adopting it for its ease of use and flexibility. This video shows how the STM32 VS Code extension works under the hood and how to get more out of it.
Specifically, we'll review the CMake files generated by the VS Code extension and how to modify...
Introduction to PIC Timers
The fourth in a series of five posts looks at 8-bit PIC hardware timers. After a review of basic timer functionality, the Timer0 module operation and configuration is reviewed and a basic application implemented using Timer0 to blink external LEDs at a frequency of 0.5Hz.


















