## Linear Feedback Shift Registers for the Uninitiated, Part IV: Easy Discrete Logarithms and the Silver-Pohlig-Hellman Algorithm

September 16, 20174 comments

Last time we talked about the multiplicative inverse in finite fields, which is rather boring and mundane, and has an easy solution with Blankinship’s algorithm.

Discrete logarithms, on the other hand, are much more interesting, and this article covers only the tip of the iceberg.

What is a Discrete Logarithm, Anyway?

Regular logarithms are something that you’re probably familiar with: let’s say you have some number $y = b^x$ and you know $y$ and $b$ but...

## Linear Feedback Shift Registers for the Uninitiated, Part III: Multiplicative Inverse, and Blankinship's Algorithm

September 9, 2017

Last time we talked about basic arithmetic operations in the finite field $GF(2)[x]/p(x)$ — addition, multiplication, raising to a power, shift-left and shift-right — as well as how to determine whether a polynomial $p(x)$ is primitive. If a polynomial $p(x)$ is primitive, it can be used to define an LFSR with coefficients that correspond to the 1 terms in $p(x)$, that has maximal length of $2^N-1$, covering all bit patterns except the all-zero...

## Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials

July 17, 2017

Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring $GF(2)[x]/p(x)$.

LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.

Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library on bitbucket called...

## Linear Feedback Shift Registers for the Uninitiated, Part I: Ex-Pralite Monks and Finite Fields

July 3, 20176 comments

Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.

— Évariste Galois, May 29, 1832

I was going to call this short series of articles “LFSRs for Dummies”, but thought better of it. What is a linear feedback shift register? If you want the short answer, the Wikipedia article is a decent introduction. But these articles are aimed at those of you who want a little bit deeper mathematical understanding, with some practical...

## Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

June 18, 20173 comments

Other articles in this series:

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...

## Donald Knuth Is the Root of All Premature Optimization

April 17, 20172 comments

This article is about something profound that a brilliant young professor at Stanford wrote nearly 45 years ago, and now we’re all stuck with it.

TL;DR

The idea, basically, is that even though optimization of computer software to execute faster is a noble goal, with tangible benefits, this costs time and effort up front, and therefore the decision to do so should not be made on whims and intuition, but instead should be made after some kind of analysis to show that it has net...

## Zebras Hate You For No Reason: Why Amdahl's Law is Misleading in a World of Cats (And Maybe in Ours Too)

February 27, 20171 comment

I’ve been wasting far too much of my free time lately on this stupid addicting game called the Kittens Game. It starts so innocently. You are a kitten in a catnip forest. Gather catnip.

And you click on Gather catnip and off you go. Soon you’re hunting unicorns and building Huts and studying Mathematics and Theology and so on. AND IT’S JUST A TEXT GAME! HTML and Javascript, that’s it, no pictures. It’s an example of an

## The Other Kind of Bypass Capacitor

January 3, 20173 comments

There’s a type of bypass capacitor I’d like to talk about today.

It’s not the usual power supply bypass capacitor, aka decoupling capacitor, which is used to provide local charge storage to an integrated circuit, so that the high-frequency supply currents to the IC can bypass (hence the name) all the series resistance and inductance from the power supply. This reduces the noise on a DC voltage supply. I’ve...

## How to Succeed in Motor Control: Olaus Magnus, Donald Rumsfeld, and YouTube

December 11, 2016

Almost four years ago, I had this insight — we were doing it wrong! Most of the application notes on motor control were about the core algorithms: various six-step or field-oriented control methods, with Park and Clarke transforms, sensorless estimators, and whatnot. It was kind of like a driving school would be, if they taught you how the accelerator and brake pedal worked, and how the four-stroke Otto cycle works in internal combustion engines, and handed you a written...

## Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...

## Oscilloscope Dreams

January 14, 20125 comments

My coworkers and I recently needed a new oscilloscope. I thought I would share some of the features I look for when purchasing one.

When I was in college in the early 1990's, our oscilloscopes looked like this:

Now the cathode ray tubes have almost all been replaced by digital storage scopes with color LCD screens, and they look like these:

Oscilloscopes are basically just fancy expensive boxes for graphing voltage vs. time. They span a wide range of features and prices:...

## Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

June 19, 2018

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.

This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...

## The CRC Wild Goose Chase: PPP Does What?!?!?!

October 23, 20142 comments

I got a bad feeling yesterday when I had to include reference information about a 16-bit CRC in a serial protocol document I was writing. And I knew it wasn’t going to end well.

The last time I looked into CRC algorithms was about five years ago. And the time before that… sometime back in 2004 or 2005? It seems like it comes up periodically, like the seventeen-year locust or sunspots or El Niño,...

## Padé Delay is Okay Today

March 1, 20166 comments

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a $p=126, q=130$ Padé approximation of a time delay:

Impressed? Maybe you should be. This...

## Second-Order Systems, Part I: Boing!!

October 29, 20142 comments

I’ve already written about the unexciting (but useful) 1st-order system, and about slew-rate limiting. So now it’s time to cover second-order systems.

The most common second-order systems are RLC circuits and spring-mass-damper systems.

Spring-mass-damper systems are fairly common; you’ve seen these before, whether you realize it or not. One household example of these is the spring doorstop (BOING!!):

(For what it’s worth: the spring...

## Lessons Learned from Embedded Code Reviews (Including Some Surprises)

August 16, 20152 comments

My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.

My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “

## First-Order Systems: The Happy Family

May 3, 20141 comment
Все счастли́вые се́мьи похо́жи друг на дру́га, ка́ждая несчастли́вая семья́ несчастли́ва по-сво́ему.

— Лев Николаевич Толстой, Анна Каренина

Happy families are all alike; every unhappy family is unhappy in its own way.

— Lev Nicholaevich Tolstoy, Anna Karenina

I was going to write an article about second-order systems, but then realized that it would be...

## Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World

September 7, 20136 comments

When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...

## Donald Knuth Is the Root of All Premature Optimization

April 17, 20172 comments

This article is about something profound that a brilliant young professor at Stanford wrote nearly 45 years ago, and now we’re all stuck with it.

TL;DR

The idea, basically, is that even though optimization of computer software to execute faster is a noble goal, with tangible benefits, this costs time and effort up front, and therefore the decision to do so should not be made on whims and intuition, but instead should be made after some kind of analysis to show that it has net...

## Bad Hash Functions and Other Stories: Trapped in a Cage of Irresponsibility and Garden Rakes

January 28, 20141 comment

I was recently using the publish() function in MATLAB to develop some documentation, and I ran into a problem caused by a bad hash function.

In a resource-limited embedded system, you aren't likely to run into hash functions. They have three major applications: cryptography, data integrity, and data structures. In all these cases, hash functions are used to take some type of data, and deterministically boil it down to a fixed-size "fingerprint" or "hash" of the original data, such that...