Lessons Learned from Embedded Code Reviews (Including Some Surprises)
My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.
My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “
Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
Oh Robot My Robot
Oh Robot! My Robot! You’ve broken off your nose! Your head is spinning round and round, your eye no longer glows, Each program after program tapped your golden memory, You used to have 12K, now there is none that I can see, Under smoldering antennae, Over long forgotten feet, My sister used your last part: The chip she tried to eat.
Oh Robot, My Robot, the remote controls—they call, The call—for...
Important Programming Concepts (Even on Embedded Systems) Part VI : Abstraction
Earlier articles:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines
We have come to the last part of the Important Programming Concepts series, on abstraction. I thought I might also talk about why there isn’t a Part VII, but decided it would distract from this article — so if you want to know the reason, along with what’s next,
Ten Little Algorithms, Part 3: Welford's Method (and Friends)
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Last time we talked about a low-pass filter, and we saw that a one-line...
Python Code from My Articles Now Online in IPython Notebooks
Ever since I started using IPython Notebooks to write these articles, I’ve been wanting to publish them in a form such that you can freely use my Python code. One of you (maredsous10) wanted this access as well.
Well, I finally bit the bullet and automated a script that will extract the Python code and create standalone notebooks, that are available publicly under the Apache license on my bitbucket account: https://bitbucket.org/jason_s/embedded-blog-public
This also means they...
Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...
Ten Little Algorithms, Part 1: Russian Peasant Multiplication
This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.
Other articles in this series:
- Part 1:
Two Capacitors Are Better Than One
I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:
And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.
Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?
I...
My Love-Hate Relationship with Stack Overflow: Arthur S., Arthur T., and the Soup Nazi
Warning: In the interest of maintaining a coherent stream of consciousness, I’m lowering the setting on my profanity filter for this post. Just wanted to let you know ahead of time.
I’ve been a user of Stack Overflow since December of 2008. And I say “user” both in the software sense, and in the drug-addict sense. I’m Jason S, user #44330, and I’m a programming addict. (Hi, Jason S.) The Gravatar, in case you were wondering, is a screen...
Fluxions for Fun and Profit: Euler, Trapezoidal, Verlet, or Runge-Kutta?
Today we're going to take another diversion from embedded systems, and into the world of differential equations, modeling, and computer simulation.
DON'T PANIC!First of all, just pretend I didn't bring up anything complicated. We're exposed to the effects of differential equations every day, whether we realize it or not. Your car speedometer and odometer are related by a differential equation, and whether you like math or not, you probably have some comprehension of what's going on: you...
Lost Secrets of the H-Bridge, Part II: Ripple Current in the DC Link Capacitor
In my last post, I talked about ripple current in inductive loads.
One of the assumptions we made was that the DC link was, in fact, a DC voltage source. In reality that's an approximation; no DC voltage source is perfect, and current flow will alter the DC link voltage. To analyze this, we need to go back and look at how much current actually is being drawn from the DC link. Below is an example. This is the same kind of graph as last time, except we added two...
Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part V: State Machines
- Part VI: Abstraction
Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but
Oscilloscope Dreams
My coworkers and I recently needed a new oscilloscope. I thought I would share some of the features I look for when purchasing one.
When I was in college in the early 1990's, our oscilloscopes looked like this:
Now the cathode ray tubes have almost all been replaced by digital storage scopes with color LCD screens, and they look like these:
Oscilloscopes are basically just fancy expensive boxes for graphing voltage vs. time. They span a wide range of features and prices:...
Important Programming Concepts (Even on Embedded Systems) Part II: Immutability
Other articles in this series:
- Part I: Idempotence
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines
- Part VI: Abstraction
This article will discuss immutability, and some of its variations in the topic of functional programming.
There are a whole series of benefits to using program variables that… well, that aren’t actually variable, but instead are immutable. The impact of...
Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals
Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:
- the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
- the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream
The unusually-good correlation properties...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 4)
Today we’re going to look at what’s been going on this past year in the chip shortage, particularly in the automotive markets. I’m going to share some recent events and statements that may shed some light on what’s been happening.
In Part Three we went through a deep dive on some aspects of Moore’s Law, the semiconductor foundries, and semiconductor economics, and we looked at the game Supply Chain Idle. We touched on a couple of important points about the...
Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World
When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...
Wye Delta Tee Pi: Observations on Three-Terminal Networks
Today I’m going to talk a little bit about three-terminal linear passive networks. These generally come in two flavors, wye and delta.
Why Wye?The town of Why, Arizona has a strange name that comes from the shape of the original road junction of Arizona State Highways 85 and 86, which was shaped like the letter Y. This is no longer the case, because the state highway department reconfigured the intersection
Linear Feedback Shift Registers for the Uninitiated, Part VI: Sing Along with the Berlekamp-Massey Algorithm
The last two articles were on discrete logarithms in finite fields — in practical terms, how to take the state \( S \) of an LFSR and its characteristic polynomial \( p(x) \) and figure out how many shift steps are required to go from the state 000...001 to \( S \). If we consider \( S \) as a polynomial bit vector such that \( S = x^k \bmod p(x) \), then this is equivalent to the task of figuring out \( k \) from \( S \) and \( p(x) \).
This time we’re tackling something...
Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer
The last four articles were on algorithms used to compute with finite fields and shift registers:
- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output
Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.
Lost Secrets of the H-Bridge, Part II: Ripple Current in the DC Link Capacitor
In my last post, I talked about ripple current in inductive loads.
One of the assumptions we made was that the DC link was, in fact, a DC voltage source. In reality that's an approximation; no DC voltage source is perfect, and current flow will alter the DC link voltage. To analyze this, we need to go back and look at how much current actually is being drawn from the DC link. Below is an example. This is the same kind of graph as last time, except we added two...
How to Include MathJax Equations in SVG With Less Than 100 Lines of JavaScript!
Today’s short and tangential note is an account of how I dug myself out of Documentation Despair. I’ve been working on some block diagrams. You know, this sort of thing, to describe feedback control systems:
And I had a problem. How do I draw diagrams like this?
I don’t have Visio and I don’t like Visio. I used to like Visio. But then it got Microsofted.
I can use MATLAB and Simulink, which are great for drawing block diagrams. Normally you use them to create a...
Stairway to Thévenin
This article was inspired by a recent post on reddit asking for help on Thévenin and Norton equivalent circuits.
(With apologies to Mr. Thévenin, the rest of the e's that follow will remain unaccented.)
I still remember my introductory circuits class on the subject, roughly as follows:
(NOTE: Do not get scared of what you see in the rest of this section. We're going to point out the traditional approach for teaching linear equivalent circuits first. If you have...
Jaywalking Around the Compiler
Our team had another code review recently. I looked at one of the files, and bolted upright in horror when I saw a function that looked sort of like this:
void some_function(SOMEDATA_T *psomedata) { asm volatile("push CORCON"); CORCON = 0x00E2; do_some_other_stuff(psomedata); asm volatile("pop CORCON"); }There is a serious bug here — do you see what it is?
Oscilloscope review: Hameg HMO2024
Last year I wrote about some of the key characteristics of oscilloscopes that are important to me for working with embedded microcontrollers. In that blog entry I rated the Agilent MSOX3024A 4-channel 16-digital-input oscilloscope highly.
Since then I have moved to a different career, and I am again on the lookout for an oscilloscope. I still consider the Agilent MSOX3024A the best choice for a...
Have You Ever Seen an Ideal Op-Amp?
Somewhere, along with unicorns and the Loch Ness Monster, lies a small colony of ideal op-amps. Op-amp is short for operational amplifier, and we start our education on them by learning about these mythical beasts, which have the following properties:
- Infinite gain
- Infinite input impedance
- Zero output impedance
And on top of it all, they will do whatever it takes to change their output in order to make their two inputs equal.
But they don't exist. Real op-amps have...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 3)
Hello again! Today we’re going to take a closer look at Moore’s Law, semiconductor foundries, and semiconductor economics — and a game that explores the effect of changing economics on the supply chain.
We’ll try to answer some of these questions:
- What does Moore’s Law really mean, and how does it impact the economics of semiconductor manufacturing?
- How does the foundry business model work, and how is it affected by the different mix of technology...
Return of the Delta-Sigma Modulators, Part 1: Modulation
About a decade ago, I wrote two articles:
- Modulation Alternatives for the Software Engineer (November 2011)
- Isolated Sigma-Delta Modulators, Rah Rah Rah! (April 2013)
Each of these are about delta-sigma modulation, but they’re short and sweet, and not very in-depth. And the 2013 article was really more about analog-to-digital converters. So we’re going to revisit the subject, this time with a lot more technical depth — in fact, I’ve had to split this...
Complexity in Consumer Electronics Considered Harmful
I recently returned from a visit to my grandmother, who lives in an assisted living community, and got to observe both her and my frustration first-hand with a new TV. This was a Vizio flatscreen TV that was fairly easy to set up, and the picture quality was good. But here's what the remote control looks like:
You will note:
- the small lettering (the number buttons are just under 1/4 inch in diameter)
- a typeface chosen for marketing purposes (matching Vizio's "futuristic" corporate...