Linear Feedback Shift Registers for the Uninitiated, Part X: Counters and Encoders
Last time we looked at LFSR output decimation and the computation of trace parity.
Today we are starting to look in detail at some applications of LFSRs, namely counters and encoders.
CountersI mentioned counters briefly in the article on easy discrete logarithms. The idea here is that the propagation delay in an LFSR is smaller than in a counter, since the logic to compute the next LFSR state is simpler than in an ordinary counter. All you need to construct an LFSR is
Linear Feedback Shift Registers for the Uninitiated, Part IX: Decimation, Trace Parity, and Cyclotomic Cosets
Last time we looked at matrix methods and how they can be used to analyze two important aspects of LFSRs:
- time shifts
- state recovery from LFSR output
In both cases we were able to use a finite field or bitwise approach to arrive at the same result as a matrix-based approach. The matrix approach is more expensive in terms of execution time and memory storage, but in some cases is conceptually simpler.
This article will be covering some concepts that are useful for studying the...
Linear Feedback Shift Registers for the Uninitiated, Part VIII: Matrix Methods and State Recovery
Last time we looked at a dsPIC implementation of LFSR updates. Now we’re going to go back to basics and look at some matrix methods, which is the third approach to represent LFSRs that I mentioned in Part I. And we’re going to explore the problem of converting from LFSR output to LFSR state.
Matrices: Beloved Historical DregsElwyn Berlekamp’s 1966 paper Non-Binary BCH Encoding covers some work on
Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer
The last four articles were on algorithms used to compute with finite fields and shift registers:
- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output
Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.
Lazy Properties in Python Using Descriptors
This is a bit of a side tangent from my normal at-least-vaguely-embedded-related articles, but I wanted to share a moment of enlightenment I had recently about descriptors in Python. The easiest way to explain a descriptor is a way to outsource attribute lookup and modification.
Python has a bunch of “magic” methods that are hooks into various object-oriented mechanisms that let you do all sorts of ridiculously clever things. Whether or not they’re a good idea is another...
Linear Feedback Shift Registers for the Uninitiated, Part VI: Sing Along with the Berlekamp-Massey Algorithm
The last two articles were on discrete logarithms in finite fields — in practical terms, how to take the state \( S \) of an LFSR and its characteristic polynomial \( p(x) \) and figure out how many shift steps are required to go from the state 000...001 to \( S \). If we consider \( S \) as a polynomial bit vector such that \( S = x^k \bmod p(x) \), then this is equivalent to the task of figuring out \( k \) from \( S \) and \( p(x) \).
This time we’re tackling something...
Linear Feedback Shift Registers for the Uninitiated, Part V: Difficult Discrete Logarithms and Pollard's Kangaroo Method
Last time we talked about discrete logarithms which are easy when the group in question has an order which is a smooth number, namely the product of small prime factors. Just as a reminder, the goal here is to find \( k \) if you are given some finite multiplicative group (or a finite field, since it has a multiplicative group) with elements \( y \) and \( g \), and you know you can express \( y = g^k \) for some unknown integer \( k \). The value \( k \) is the discrete logarithm of \( y \)...
Linear Feedback Shift Registers for the Uninitiated, Part IV: Easy Discrete Logarithms and the Silver-Pohlig-Hellman Algorithm
Last time we talked about the multiplicative inverse in finite fields, which is rather boring and mundane, and has an easy solution with Blankinship’s algorithm.
Discrete logarithms, on the other hand, are much more interesting, and this article covers only the tip of the iceberg.
What is a Discrete Logarithm, Anyway?Regular logarithms are something that you’re probably familiar with: let’s say you have some number \( y = b^x \) and you know \( y \) and \( b \) but...
Linear Feedback Shift Registers for the Uninitiated, Part III: Multiplicative Inverse, and Blankinship's Algorithm
Last time we talked about basic arithmetic operations in the finite field \( GF(2)[x]/p(x) \) — addition, multiplication, raising to a power, shift-left and shift-right — as well as how to determine whether a polynomial \( p(x) \) is primitive. If a polynomial \( p(x) \) is primitive, it can be used to define an LFSR with coefficients that correspond to the 1 terms in \( p(x) \), that has maximal length of \( 2^N-1 \), covering all bit patterns except the all-zero...
Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials
Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).
LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.
Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library called libgf2,...
Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer
The last four articles were on algorithms used to compute with finite fields and shift registers:
- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output
Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.
10 Circuit Components You Should Know
Chefs have their miscellaneous ingredients, like condensed milk, cream of tartar, and xanthan gum. As engineers, we too have quite our pick of circuits, and a good circuit designer should know what's out there. Not just the bread and butter ingredients like resistors, capacitors, op-amps, and comparators, but the miscellaneous "gadget" components as well.
Here are ten circuit components you may not have heard of, but which are occasionally quite useful.
1. Multifunction gate (
How to Build a Fixed-Point PI Controller That Just Works: Part II
In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:
- various forms and whether to use the canonical form for z-transforms (don't do it!)
- order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
- saturation and anti-windup
In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...
Turn It On Again: Modeling Power MOSFET Turn-On Dependence on Source Inductance
This is a short article explaining how to analyze part of the behavior of a power MOSFET during turn-on, and how it is influenced by the parasitic inductance at the source terminal. The brief qualitative reason that source inductance is undesirable is that it uses up voltage when current starts increasing during turn-on (remember, V = L dI/dt), voltage that would otherwise be available to turn the transistor on faster. But I want to show a quantitative approximation to understand the impact of additional source inductance, and I want to compare it to the effects of extra inductance at the gate or drain.
Which MOSFET topology?
A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:
From left to right, these are:
High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction
Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.
This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.
Ernie, You Have a Banana in Your EarI have had a really really tough time writing this article. I like the...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 4)
Today we’re going to look at what’s been going on this past year in the chip shortage, particularly in the automotive markets. I’m going to share some recent events and statements that may shed some light on what’s been happening.
In Part Three we went through a deep dive on some aspects of Moore’s Law, the semiconductor foundries, and semiconductor economics, and we looked at the game Supply Chain Idle. We touched on a couple of important points about the...
How to Analyze a Differential Amplifier
There are a handful of things that you just have to know if you do any decent amount of electronic circuit design work. One of them is a voltage divider. Another is the behavior of an RC filter. I'm not going to explain these two things or even link to a good reference on them — either you already know how they work, or you're smart enough to look it up yourself.
The handful of things also includes some others that are a little more interesting to discuss. One of them is this...
Linear Feedback Shift Registers for the Uninitiated, Part VIII: Matrix Methods and State Recovery
Last time we looked at a dsPIC implementation of LFSR updates. Now we’re going to go back to basics and look at some matrix methods, which is the third approach to represent LFSRs that I mentioned in Part I. And we’re going to explore the problem of converting from LFSR output to LFSR state.
Matrices: Beloved Historical DregsElwyn Berlekamp’s 1966 paper Non-Binary BCH Encoding covers some work on
The CRC Wild Goose Chase: PPP Does What?!?!?!
I got a bad feeling yesterday when I had to include reference information about a 16-bit CRC in a serial protocol document I was writing. And I knew it wasn’t going to end well.
The last time I looked into CRC algorithms was about five years ago. And the time before that… sometime back in 2004 or 2005? It seems like it comes up periodically, like the seventeen-year locust or sunspots or El Niño,...
Oscilloscope Dreams
My coworkers and I recently needed a new oscilloscope. I thought I would share some of the features I look for when purchasing one.
When I was in college in the early 1990's, our oscilloscopes looked like this:
Now the cathode ray tubes have almost all been replaced by digital storage scopes with color LCD screens, and they look like these:
Oscilloscopes are basically just fancy expensive boxes for graphing voltage vs. time. They span a wide range of features and prices:...
Padé Delay is Okay Today
This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.
Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:
Impressed? Maybe you should be. This...
Second-Order Systems, Part I: Boing!!
I’ve already written about the unexciting (but useful) 1st-order system, and about slew-rate limiting. So now it’s time to cover second-order systems.
The most common second-order systems are RLC circuits and spring-mass-damper systems.
Spring-mass-damper systems are fairly common; you’ve seen these before, whether you realize it or not. One household example of these is the spring doorstop (BOING!!):
(For what it’s worth: the spring...
Another 10 Circuit Components You Should Know
It's that time again to review all the oddball goodies available in electronic components. These are things you should have in your bag of tricks when you need to design a circuit board. If you read my previous posts and were looking forward to more, this article's for you!
1. Bus switches
I can't believe I haven't mentioned bus switches before. What is a bus switch?
There are lots of different options for switches:
- mechanical switch / relay: All purpose, two...
The CRC Wild Goose Chase: PPP Does What?!?!?!
I got a bad feeling yesterday when I had to include reference information about a 16-bit CRC in a serial protocol document I was writing. And I knew it wasn’t going to end well.
The last time I looked into CRC algorithms was about five years ago. And the time before that… sometime back in 2004 or 2005? It seems like it comes up periodically, like the seventeen-year locust or sunspots or El Niño,...
Tolerance Analysis
Today we’re going to talk about tolerance analysis. This is a topic that I have danced around in several previous articles, but never really touched upon in its own right. The closest I’ve come is Margin Call, where I discussed several different techniques of determining design margin, and ran through some calculations to justify that it was safe to allow a certain amount of current through an IRFP260N MOSFET.
Tolerance analysis...
First-Order Systems: The Happy Family
Все счастли́вые се́мьи похо́жи друг на дру́га, ка́ждая несчастли́вая семья́ несчастли́ва по-сво́ему.— Лев Николаевич Толстой, Анна Каренина
Happy families are all alike; every unhappy family is unhappy in its own way.— Lev Nicholaevich Tolstoy, Anna Karenina
I was going to write an article about second-order systems, but then realized that it would be...
Lessons Learned from Embedded Code Reviews (Including Some Surprises)
My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.
My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 3)
Hello again! Today we’re going to take a closer look at Moore’s Law, semiconductor foundries, and semiconductor economics — and a game that explores the effect of changing economics on the supply chain.
We’ll try to answer some of these questions:
- What does Moore’s Law really mean, and how does it impact the economics of semiconductor manufacturing?
- How does the foundry business model work, and how is it affected by the different mix of technology...
Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World
When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...