## Reading and Understanding Profitability Metrics from Financial Statements

Whoa! That has got to be the most serious-minded title I’ve ever written. Profitability Metrics from Financial Statements, indeed. I’m still writing Part 2 of my Supply Chain Games article, and I was about to mention something about whether a company is profitable, when I realized something that didn’t quite fit into the flow of things, so I thought I’d handle it separately: how are you supposed to know what I mean, when I say a company is profitable? And how am I...

## Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 1)

So by now I’m sure you’ve heard about the semiconductor shortage of 2021. For a few complicated reasons, demand is greater than supply, and not everybody who wants to buy integrated circuits can do so. Today we’re going to try to answer some hard questions:

- Why are we in the middle of a semiconductor shortage?
- Why is it taking so long to get my [insert part number here]?
- Did this shortage suddenly sneak up on everybody? If not, what were the signs, and why...

## Definite Article: Notes on Traceability

Electronic component distibutor Digi-Key recently announced part tracing for surface-mount components purchased in cut-tape form. This is a big deal, and it’s a feature that is a good example of traceability. Some thing or process that has traceability basically just means that it’s possible to determine an object’s history or provenance: where it came from and what has happened to it since its creation. There are a...

## Painting with Light to Measure Time

Recently I was faced with a dilemma while working from home. I needed to verify an implementation of first-order sigma-delta modulation used to adjust LED brightness. (I have described this in more detail in Modulation Alternatives for the Software Engineer.) I did not, however, have an oscilloscope.

And then I remembered something, about a technique called “light painting”: basically a long-exposure photograph where a...

## Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation

Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...

## Linear Feedback Shift Registers for the Uninitiated, Part XVII: Reverse-Engineering the CRC

Last time, we continued a discussion about error detection and correction by covering Reed-Solomon encoding. I was going to move on to another topic, but then there was this post on Reddit asking how to determine unknown CRC parameters:

I am seeking to reverse engineer an 8-bit CRC. I don’t know the generator code that’s used, but can lay my hands on any number of output sequences given an input sequence.

This is something I call the “unknown oracle”...

## A Wish for Things That Work

As the end of the year approaches, I become introspective. This year I am frustrated by bad user interfaces in software.

Actually, every year, throughout the year, I am frustrated by bad user interfaces in software. And yet here it is, the end of 2017, and things aren’t getting much better! Argh!

I wrote about this sort of thing a bit back in 2011 (“Complexity in Consumer Electronics Considered Harmful”) but I think it’s time to revisit the topic. So I’m...

## Linear Feedback Shift Registers for the Uninitiated, Part XI: Pseudorandom Number Generation

Last time we looked at the use of LFSRs in counters and position encoders.

This time we’re going to look at pseudorandom number generation, and why you may — or may not — want to use LFSRs for this purpose.

But first — an aside:

Science Fair 1983When I was in fourth grade, my father bought a Timex/Sinclair 1000. This was one of several personal computers introduced in 1982, along with the Commodore 64. The...

## Linear Feedback Shift Registers for the Uninitiated, Part X: Counters and Encoders

Last time we looked at LFSR output decimation and the computation of trace parity.

Today we are starting to look in detail at some applications of LFSRs, namely counters and encoders.

CountersI mentioned counters briefly in the article on easy discrete logarithms. The idea here is that the propagation delay in an LFSR is smaller than in a counter, since the logic to compute the next LFSR state is simpler than in an ordinary counter. All you need to construct an LFSR is

## Linear Feedback Shift Registers for the Uninitiated, Part IX: Decimation, Trace Parity, and Cyclotomic Cosets

Last time we looked at matrix methods and how they can be used to analyze two important aspects of LFSRs:

- time shifts
- state recovery from LFSR output

In both cases we were able to use a finite field or bitwise approach to arrive at the same result as a matrix-based approach. The matrix approach is more expensive in terms of execution time and memory storage, but in some cases is conceptually simpler.

This article will be covering some concepts that are useful for studying the...

## My Love-Hate Relationship with Stack Overflow: Arthur S., Arthur T., and the Soup Nazi

Warning: In the interest of maintaining a coherent stream of consciousness, I’m lowering the setting on my profanity filter for this post. Just wanted to let you know ahead of time.

I’ve been a user of Stack Overflow since December of 2008. And I say “user” both in the software sense, and in the drug-addict sense. I’m Jason S, user #44330, and I’m a programming addict. (Hi, Jason S.) The Gravatar, in case you were wondering, is a screen...

## Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 4)

Today we’re going to look at what’s been going on this past year in the chip shortage, particularly in the automotive markets. I’m going to share some recent events and statements that may shed some light on what’s been happening.

In Part Three we went through a deep dive on some aspects of Moore’s Law, the semiconductor foundries, and semiconductor economics, and we looked at the game Supply Chain Idle. We touched on a couple of important points about the...

## Lazy Properties in Python Using Descriptors

This is a bit of a side tangent from my normal at-least-vaguely-embedded-related articles, but I wanted to share a moment of enlightenment I had recently about descriptors in Python. The easiest way to explain a descriptor is a way to outsource attribute lookup and modification.

Python has a bunch of “magic” methods that are hooks into various object-oriented mechanisms that let you do all sorts of ridiculously clever things. Whether or not they’re a good idea is another...

## Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer

The last four articles were on algorithms used to compute with finite fields and shift registers:

- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output

Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.

## Levitating Globe Teardown, Part 2

Part 1 of this article was really more of an extended (and cynical) product review. In this part of the article, I actually take things apart (sometimes a bit more suddenly than I meant to) and show you some innards.First the globe. I knew there was a magnet in there someplace, because it's obviously plastic and it also attracts metal. I had intended to gently part the globe at the glue bond along the equator. I started by trying to gently flex the thing on my work...

## Linear Feedback Shift Registers for the Uninitiated, Part VIII: Matrix Methods and State Recovery

Last time we looked at a dsPIC implementation of LFSR updates. Now we’re going to go back to basics and look at some matrix methods, which is the third approach to represent LFSRs that I mentioned in Part I. And we’re going to explore the problem of converting from LFSR output to LFSR state.

Matrices: Beloved Historical DregsElwyn Berlekamp’s 1966 paper Non-Binary BCH Encoding covers some work on

## Linear Feedback Shift Registers for the Uninitiated, Part VI: Sing Along with the Berlekamp-Massey Algorithm

The last two articles were on discrete logarithms in finite fields — in practical terms, how to take the state \( S \) of an LFSR and its characteristic polynomial \( p(x) \) and figure out how many shift steps are required to go from the state 000...001 to \( S \). If we consider \( S \) as a polynomial bit vector such that \( S = x^k \bmod p(x) \), then this is equivalent to the task of figuring out \( k \) from \( S \) and \( p(x) \).

This time we’re tackling something...

## Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 1)

So by now I’m sure you’ve heard about the semiconductor shortage of 2021. For a few complicated reasons, demand is greater than supply, and not everybody who wants to buy integrated circuits can do so. Today we’re going to try to answer some hard questions:

- Why are we in the middle of a semiconductor shortage?
- Why is it taking so long to get my [insert part number here]?
- Did this shortage suddenly sneak up on everybody? If not, what were the signs, and why...

## Linear Feedback Shift Registers for the Uninitiated, Part V: Difficult Discrete Logarithms and Pollard's Kangaroo Method

Last time we talked about discrete logarithms which are easy when the group in question has an order which is a smooth number, namely the product of small prime factors. Just as a reminder, the goal here is to find \( k \) if you are given some finite multiplicative group (or a finite field, since it has a multiplicative group) with elements \( y \) and \( g \), and you know you can express \( y = g^k \) for some unknown integer \( k \). The value \( k \) is the discrete logarithm of \( y \)...

## Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials

Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).

LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.

Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library called libgf2,...

## Basic hand tools for electronics assembly

Though the software tools vary with different microcontrollers, many hardware tools are the same.

## Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials

Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).

LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.

Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library called libgf2,...

## Margin Call: Fermi Problems, Highway Horrors, Black Swans, and Why You Should Worry About When You Should Worry

“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don’t know. But there are also unknown unknowns — there are things we do not know we don’t know.” — Donald Rumsfeld, February 2002

Today’s topic is engineering margin.

XKCD had a what-if column involving Fermi...

## Linear Feedback Shift Registers for the Uninitiated, Part XVII: Reverse-Engineering the CRC

Last time, we continued a discussion about error detection and correction by covering Reed-Solomon encoding. I was going to move on to another topic, but then there was this post on Reddit asking how to determine unknown CRC parameters:

I am seeking to reverse engineer an 8-bit CRC. I don’t know the generator code that’s used, but can lay my hands on any number of output sequences given an input sequence.

This is something I call the “unknown oracle”...

## Linear Feedback Shift Registers for the Uninitiated, Part VI: Sing Along with the Berlekamp-Massey Algorithm

The last two articles were on discrete logarithms in finite fields — in practical terms, how to take the state \( S \) of an LFSR and its characteristic polynomial \( p(x) \) and figure out how many shift steps are required to go from the state 000...001 to \( S \). If we consider \( S \) as a polynomial bit vector such that \( S = x^k \bmod p(x) \), then this is equivalent to the task of figuring out \( k \) from \( S \) and \( p(x) \).

This time we’re tackling something...

## Linear Feedback Shift Registers for the Uninitiated, Part VIII: Matrix Methods and State Recovery

Last time we looked at a dsPIC implementation of LFSR updates. Now we’re going to go back to basics and look at some matrix methods, which is the third approach to represent LFSRs that I mentioned in Part I. And we’re going to explore the problem of converting from LFSR output to LFSR state.

Matrices: Beloved Historical DregsElwyn Berlekamp’s 1966 paper Non-Binary BCH Encoding covers some work on

## Linear Feedback Shift Registers for the Uninitiated, Part XI: Pseudorandom Number Generation

Last time we looked at the use of LFSRs in counters and position encoders.

This time we’re going to look at pseudorandom number generation, and why you may — or may not — want to use LFSRs for this purpose.

But first — an aside:

Science Fair 1983When I was in fourth grade, my father bought a Timex/Sinclair 1000. This was one of several personal computers introduced in 1982, along with the Commodore 64. The...

## Tenderfoot: Embedded Software and Firmware Specialties

Once upon a time (seven years ago) I answered a question on Stack Overflow. Then Stephane suggested I turn that answer into a blog post. Great idea! This post dives deeper into the original question: “Is it possible to fragment this field (embedded software and firmware) into sub-fields?”

This post represents a detailed and updated response to my original Stack Overflow answer. I hope this post provides guidance and useful information to the “tenderfoots” in the...

## Linear Feedback Shift Registers for the Uninitiated, Part III: Multiplicative Inverse, and Blankinship's Algorithm

Last time we talked about basic arithmetic operations in the finite field \( GF(2)[x]/p(x) \) — addition, multiplication, raising to a power, shift-left and shift-right — as well as how to determine whether a polynomial \( p(x) \) is primitive. If a polynomial \( p(x) \) is primitive, it can be used to define an LFSR with coefficients that correspond to the 1 terms in \( p(x) \), that has maximal length of \( 2^N-1 \), covering all bit patterns except the all-zero...

## Linear Feedback Shift Registers for the Uninitiated, Part V: Difficult Discrete Logarithms and Pollard's Kangaroo Method

Last time we talked about discrete logarithms which are easy when the group in question has an order which is a smooth number, namely the product of small prime factors. Just as a reminder, the goal here is to find \( k \) if you are given some finite multiplicative group (or a finite field, since it has a multiplicative group) with elements \( y \) and \( g \), and you know you can express \( y = g^k \) for some unknown integer \( k \). The value \( k \) is the discrete logarithm of \( y \)...