Pay it Forward
A popular car bumper sticker reads, "If you can read this, thank a teacher!" I might say, "If you can read THIS (article on Embedded Related), then you've been blessed with great experiences and/or great educators or volunteers that got you excited about tech and helped you believe that you had a future in this field!" Why not pay it forward by helping other children have those same great experiences? As we enter another season of giving, I hope you consider doing what you can to support the hundreds or thousands of non-profit organizations, educators, and volunteers around the world who are getting kids excited about tech the same way YOU got excited about tech. In this article, I'll share with you a handful of organizations that I know of or donate to that have this mission. How do you like to give back?
Zephyr: West Manifest For Application Development
In this blog post, I show a simpler way to create custom West manifest files. This technique eliminates the need to duplicate the complex West manifest from upstream Zephyr. I also show how we can use the West manifest to include out-of-tree board and SoC definitions, and include our own out-of-tree drivers.
Simulating Your Embedded Project on Your Computer (Part 2)
Having a simulation of your embedded project is like having a superpower that improves the quality and pace of your development ten times over! To be useful, though, it can't take longer to develop the simulation than it takes to develop the application code and for many simulation techniques "the juice isn't worth the squeeze"! In the last article, I showed you how to use the terminal (i.e. printf/getchar) to easily make a completely functional simulation. In this article, we'll take simulation to the next level, either in terms of realism (by using virtual hardware) or in terms of user experience (by using a GUI to simulate our hardware, instead of using the terminal).
In TCL FPGA Wizards Trust
In TCL FPGA wizards trust. The best way to learn TCL is exposure therapy which we will be doing here using two examples: One for creation of a project with synthesis and implementation steps and another for simulation.
How 5G impacts future IoT development
The Internet of Things (IoT) applications are ubiquitous today. IoT is used in almost every industrial, commercial, and consumer market segment, including autonomous driving, smart factories, automation and preventive maintenance, smart homes, smart cities, security, asset tracking, supply chain management, agriculture, farming, healthcare, smart medicine and remote surgery, augmented reality applications, activity monitoring, and more. The three most promising uses of IoT are smart manufacturing, autonomous driving, and healthcare, particularly remote surgery.
Product quality: belief or proof?
Embedded software development is a challenging activity, so it is essential to have tools and IP that is of the best quality. However, assessing that quality can be, in itself, a challenge.
Picowoose: The Raspberry Pi Pico-W meets Mongoose
This example application describes the way to adapt the George Robotics CYW43 driver, present in the Pico-SDK, to work with Cesanta's Mongoose. We are then able to use Mongoose internal TCP/IP stack (with TLS 1.3), instead of lwIP (and MbedTLS).
Simulating Your Embedded Project on Your Computer (Part 1)
Having a simulation of your embedded project is like having a superpower that improves the quality and pace of your development ten times over! To be useful, though, it can't take longer to develop the simulation than it takes to develop the application code and for many simulation techniques "the juice isn't worth the squeeze"! In this two-part blog series, I'll share with you the arguments in favor of simulation (so, hopefully, you too believe in its value) and I'll show you what works (and what doesn't work) to help you to simply, easily, and quickly simulate your embedded project on your computer.
Simulating Your Embedded Project on Your Computer (Part 2)
Having a simulation of your embedded project is like having a superpower that improves the quality and pace of your development ten times over! To be useful, though, it can't take longer to develop the simulation than it takes to develop the application code and for many simulation techniques "the juice isn't worth the squeeze"! In the last article, I showed you how to use the terminal (i.e. printf/getchar) to easily make a completely functional simulation. In this article, we'll take simulation to the next level, either in terms of realism (by using virtual hardware) or in terms of user experience (by using a GUI to simulate our hardware, instead of using the terminal).
Simulating Your Embedded Project on Your Computer (Part 1)
Having a simulation of your embedded project is like having a superpower that improves the quality and pace of your development ten times over! To be useful, though, it can't take longer to develop the simulation than it takes to develop the application code and for many simulation techniques "the juice isn't worth the squeeze"! In this two-part blog series, I'll share with you the arguments in favor of simulation (so, hopefully, you too believe in its value) and I'll show you what works (and what doesn't work) to help you to simply, easily, and quickly simulate your embedded project on your computer.
Small or fast?
Developers of software for desktop computers take code optimization for granted. Embedded developers typically need to pay much more attention to the details
How to Read a Power MOSFET Datasheet
One of my pet peeves is when my fellow engineers misinterpret component datasheets. This happened a few times recently in separate instances, all involving power MOSFETs. So it’s time for me to get on my soapbox. Listen up! I was going to post...
Introduction to Microcontrollers - Beginnings
Welcome to this Introduction to Microcontroller Programming tutorial series. If you are looking to learn the basics of embedded programming for microcontrollers (and a bit of embedded hardware design as well), I hope these tutorials will help you...
There's a State in This Machine!
An introduction to state machines and their implementation. Working from an intuitive definition of the state machine concept, we will start with a straightforward implementation then we evolve it into a more robust and engineered solution.
Lost Secrets of the H-Bridge, Part V: Gate Drives for Dummies
Learn the most important issues in power MOSFET and IGBT gate drives: - Transistor behavior during switching - Calculating turn-on and turn-off times - Passive components used between gate drive IC and transistor - Reverse recovery - Capacitively-coupled spurious turn-on - Factors that influence a good choice of turn-on and turn-off times - Gate drive supply voltage management - Bootstrap gate drives - Design issues impacting reliability
In TCL FPGA Wizards Trust
In TCL FPGA wizards trust. The best way to learn TCL is exposure therapy which we will be doing here using two examples: One for creation of a project with synthesis and implementation steps and another for simulation.