

Optimizing Hardware Design: Reducing Iterations with DSM
Often, product teams curate feature roadmaps that fail to account for the interdependencies in product components. For this article, I wrote about how system architecture tools like Design(dependency) Structure matrix (DSM) can be used to evaluate feature roadmaps to avoid the purgatory of change propagation and accompanying endless Iteration loops. These iteration loops are sometimes affordable (manageable) in software development (Agile saves lives), but for hardware teams - especially small product teams and startups - the lost time, and money is the stuff of which product graves are made.

3 Tips for Developing Embedded Systems with AI
Explore how to leverage AI in developing embedded systems with three practical tips, learn why documenting your workflows, supercharging testing and debugging, and adopting AI-assisted code generation can save time, reduce errors, and boost performance in your projects, and discover actionable insights to streamline development in resource-constrained environments, this blog explains how to prepare for AI integration while keeping the expertise of experienced engineers intact, offering real-world examples that show how even incremental AI adoption can revolutionize your development process, whether you’re new to AI or seeking to enhance existing practices, these strategies provide a clear roadmap to build smarter, more efficient embedded systems using AI.

The Most Annoying Sound
Independent consultants often face requests and requirements that go beyond the technicalities of software and hardware. Designing user interfaces is a common example, and even though most of us are not UI experts, we still have to get it right, otherwise the users may get annoyed, and the product will fail. However, what happens when we're asked explicitly to annoy users? Here's a true story about such a case.

OS influence on power consumption
Power consumption of an embedded system may be influenced in software in general, but selection of an operating system can be key.

On optimizing manual soldering
When faced with manual soldering of thousands of components, speed and efficiency become pivotal. Here are some takeaways from my own experience attempting to optimize such a process.

On hardware state machines: How to write a simple MAC controller using the RP2040 PIOs
Hardware state machines are nice, and the RP2040 has two blocks with up to four machines each. Their instruction set is limited, but powerful, and they can execute an instruction per cycle, pushing and popping from their FIFOs and shifting bytes in and out. The Raspberry Pi Pico does not have an Ethernet connection, but there are many PHY boards available… take a LAN8720 board and connect it to the Pico; you’re done. The firmware ? Introducing Mongoose…

Graphical medicine
Although an appealing user interface is a good option for any device, in medical applications it can be a life saver.

Modern C++ in Embedded Development: (Don't Fear) The ++
While C is still the language of choice for embedded development, the adoption of C++ has grown steadily. Yet, reservations about dynamic memory allocation and fears of unnecessary code bloat have kept many in the C camp. This discourse aims to explore the intricacies of employing C++ in embedded systems, negotiating the issues of dynamic memory allocation, and exploiting the benefits of C++ offerings like std::array and constexpr. Moreover, it ventures into the details of the zero-overhead principle and the nuanced distinctions between C and C++. The takeaway? Armed with the right knowledge and a careful approach, C++ can indeed serve as a powerful, safer, and more efficient tool for embedded development.

Cracking the (embedded) Coding Interview
You never forget the day you land your first job. The thrill of receiving that call from your recruiter to tell you that you bagged your dream role! The relief when you finally see the offer letter you’ve been working towards for...

Lost Secrets of the H-Bridge, Part V: Gate Drives for Dummies
Learn the most important issues in power MOSFET and IGBT gate drives: - Transistor behavior during switching - Calculating turn-on and turn-off times - Passive components used between gate drive IC and transistor - Reverse recovery - Capacitively-coupled spurious turn-on - Factors that influence a good choice of turn-on and turn-off times - Gate drive supply voltage management - Bootstrap gate drives - Design issues impacting reliability

3 Tips for Developing Embedded Systems with AI
Explore how to leverage AI in developing embedded systems with three practical tips, learn why documenting your workflows, supercharging testing and debugging, and adopting AI-assisted code generation can save time, reduce errors, and boost performance in your projects, and discover actionable insights to streamline development in resource-constrained environments, this blog explains how to prepare for AI integration while keeping the expertise of experienced engineers intact, offering real-world examples that show how even incremental AI adoption can revolutionize your development process, whether you’re new to AI or seeking to enhance existing practices, these strategies provide a clear roadmap to build smarter, more efficient embedded systems using AI.

There's a State in This Machine!
An introduction to state machines and their implementation. Working from an intuitive definition of the state machine concept, we will start with a straightforward implementation then we evolve it into a more robust and engineered solution.

Introduction to Microcontrollers - Beginnings
Welcome to this Introduction to Microcontroller Programming tutorial series. If you are looking to learn the basics of embedded programming for microcontrollers (and a bit of embedded hardware design as well), I hope these tutorials will help you...

You Don't Need an RTOS (Part 1)
In this first article, we'll compare our two contenders, the superloop and the RTOS. We'll define a few terms that help us describe exactly what functions a scheduler does and why an RTOS can help make certain systems work that wouldn't with a superloop. By the end of this article, you'll be able to: - Measure or calculate the deadlines, periods, and worst-case execution times for each task in your system, - Determine, using either a response-time analysis or a utilization test, if that set of tasks is schedulable using either a superloop or an RTOS, and - Assign RTOS task priorities optimally.

Embedded Systems Roadmaps
What skills should every embedded systems engineer have? What should you study next to improve yourself as an embedded systems engineer? In this article I'll share with you a few lists from well-respected sources that seek to answer these questions, with the hope of helping provide you a path to mastery. Whether you've only just finished your first Arduino project or you've been building embedded systems for decades, I believe there's something in here for everyone to help improve themselves as embedded systems engineers.

How to Read a Power MOSFET Datasheet
One of my pet peeves is when my fellow engineers misinterpret component datasheets. This happened a few times recently in separate instances, all involving power MOSFETs. So it’s time for me to get on my soapbox. Listen up! I was going to post...
