Blinkenlights 2.0
Nothing spells old movie computers like a panel of randomly blinking lights, but in fact, these so-called "blinkenlights" can be valuable indicators - especially in embedded systems where the user interface must be minimal, small and cheap. Control of these lights can be achieved using a very simple, real-time interpreted script, and this kind of solution may be extended to other and more complex embedded tasks.
The volatile keyword
Although the C keyword volatile is very useful in embedded applications, care is needed to use it correctly and vigilance is required to ensure its correct implementation by compilers.
When a Mongoose met a MicroPython
This is more a framework than an actual application, with it you can integrate MicroPython and Cesanta's Mongoose.
Mongoose runs when called by MicroPython and is able to run Python functions as callbacks for the events you decide in your event handler. The code is completely written in C, except for the example Python callback functions, of course. To try it, you can just build this example on a Linux machine, and, with just a small tweak, you can also run it on any ESP32 board.
Getting Started With CUDA C on an Nvidia Jetson: GPU Architecture
In the previous blog post (Getting Started With CUDA C on Jetson Nvidia: Hello CUDA World!) I showed how to develop applications targeted at a GPU on a Nvidia Jetson Nano. As we observed in that blog post, performing a calculation on a 1-D array on a GPU had no performance benefit compared to a traditional CPU implementation, even on an array with many elements. In this blog post, we will learn about the GPU architecture to better explain the behavior and to understand the applications where a GPU shines (hint: it has to do with graphics).
Understanding Microchip 8-bit PIC Configuration
The second post of a five part series picks up getting started developing with Microchip 8-bit PIC Microcontroller by examining the how and why of processor configuration. Topics discussed include selecting the oscillator to use during processor startup and refining the configuration once the application starts. A walk through of the code generated by the Microchip IDE provides a concrete example of the specific Configuration Word and SFR values needed to configure the project specific clock configuration.
C to C++: Templates and Generics – Supercharging Type Flexibility
"C to C++: Templates and Generics – Supercharging Type Flexibility" illuminates the rigidity of C when managing multiple types and the confusion of code replication or macro complexity. In contrast, C++ offers templates, acting as type-agnostic blueprints for classes and functions, which allows for the creation of versatile and reusable code without redundancy. By using templates, developers can define operations like add once and apply them to any data type, simplifying codebases significantly. Generics further this concept, enabling a single code structure to handle diverse data types efficiently—a boon for embedded systems where operations must be performed on varying data, yet code efficiency is critical due to resource limitations. The blog walks through practical applications, showcasing how templates streamline processes and ensure type safety with static_assert, all while weighing the pros and cons of their use in embedded software, advocating for careful practice to harness their full potential.
Simple C++ State Machine Engine
When implementing state machines in your project it is an advantage to rely on a tried and tested state machine engine. This component is reused for every kind of application and helps the developer focus on the domain part of the software. In this article, the design process that turns a custom C++ code into a finite-state machine engine is fully described with motivations and tradeoffs for each iteration.
Getting Started With CUDA C on an Nvidia Jetson: Hello CUDA World!
In this blog post, I introduce CUDA, which is a framework designed to allow developers to take advantage of Nvidia's GPU hardware acceleration to efficiently implement certain type of applications. I demonstrate an implementation to perform vector addition using CUDA C and compare it against the traditional implementation in "regular" C.
Cortex-M Exception Handling (Part 1)
This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems.
So You Want To Be An Embedded Systems Developer
Then listen now to what I say. Just get an electric guitar and take some time and learn how to play. Oh, wait, that's a song by the Byrds. But the strategy is the same. Get some information and tools and learn how to use them. No need to...
Lost Secrets of the H-Bridge, Part III: Practical Issues of Inductor and Capacitor Ripple Current
We've been analyzing the ripple current in an H-bridge, both in an inductive load and the DC link capacitor. Here's a really quick recap; if you want to get into more details, go back and read part I and part II until you've got equations coming...
Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough
Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this...
Endianness and Serial Communication
Endianness is a consideration that is easily overlooked in the design of embedded systems. I myself am amply guilty of this oversight. It’s something you don’t ever have to worry about if you’re only working with a single...
Important Programming Concepts (Even on Embedded Systems) Part I: Idempotence
There are literally hundreds, if not thousands, of subtle concepts that contribute to high quality software design. Many of them are well-known, and can be found in books or the Internet. I’m going to highlight a few of the ones I think...
Introduction to Microcontrollers - Driving WS2812 RGB LEDs
[quicklinks] This tutorial chapter is a bit of a detour, but I think an interesting and useful one. It introduces a bit of assembly language programming, and demonstrates bit-banging a tight serial data protocol. And it deals...
Five Embedded Linux Topics for Newbies !
Are you an embedded systems enthusiast looking to broaden your horizons with embedded Linux? explore those 5 topics.
Unuglify C++ FSM with DSL
Domain Specific Languages (DSL) are an effective way to avoid boilerplate or repetitive code. Using DSLs lets the programmer focus on the problem domain, rather than the mechanisms used to solve it. Here I show how to design and implement a DSL using the C++ preprocessor, using the FSM library, and the examples I presented in my previous articles.
Getting Started With Zephyr: Writing Data to EEPROM
In this blog post, I show how to implement a Zephyr application to interact with EEPROM. I show how the Zephyr device driver model allows application writers to be free of the underlying implementation details. Unfortunately, the application didn't work as expected, and I'm still troubleshooting the cause.