EmbeddedRelated.com
Tutorials

Introduction to Microcontrollers - Driving WS2812 RGB LEDs

Mike Silva November 14, 201330 comments

This tutorial chapter is a bit of a detour, but I think an interesting and useful one.  It introduces a bit of assembly language programming, and demonstrates bit-banging a tight serial data protocol.  And it deals with RGB LEDs, which are just very fun in their own right, especially these new parts.  So I thought I'd post this to give readers time for some holiday lighting experimenting.

Back To The Future

Remember how we started this...


Introduction to Microcontrollers - Button Matrix & Auto Repeating

Mike Silva November 12, 2013

Too Many Buttons, Not Enough Inputs

Assigning one GPIO input to each button can use up a lot of GPIO pins.  Numeric input requires at least 10 buttons, plus however many additional control or function buttons.  This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be.  A very common response to this expense is to wire buttons (keys, etc) in a matrix.  By connecting our buttons in an...


Energia - program a TI MSP430 using Arduino sketches

Lonnie Honeycutt November 5, 20131 comment
TI MSP430 Launchpad

I started tinkering with microcontroller a couple of years ago with an Arduino Uno.  I had a little experience with C, so programming in the Arduino environment has been relatively easy and straightforward for me.  My code is not necessarily elegant or efficient, but I can usually figure out how to make an Arduino do what I want it to do eventually.  A lot of credit to the Arduino userbase, as it is very easy to figure most things out with a quick Google...


Introduction to Microcontrollers - Buttons and Bouncing

Mike Silva October 26, 20133 comments

What Is A Button?

To your hardware, that is.  As discussed in Introduction to Microcontrollers - More On GPIO, a button (or key, or switch, or any form of mechanical contact) is generally hooked up to a microcontroller so as to generate a certain logic level when pushed or closed or "active," and the opposite logic level when unpushed or open or "inactive."  The active logic level can be either '0' or '1', but for reasons both historical and electrical, an...


Arduino robotics #4 - HC-SR04 ultrasonic sensor

Lonnie Honeycutt October 20, 20131 comment
Arduino Robotics

Arduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot.  This build is meant to be affordable, relatively easy and instructive.  The total cost of the build is around $50.  

1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.

Arduino robotics #3 - wiring, coding and a test run

Lonnie Honeycutt October 17, 2013
Arduino Robotics

Arduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot.  This build is meant to be affordable, relatively easy and instructive.  The total cost of the build is around $50.  

1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4. 

Arduino robotics #2 - chassis, locomotion and power

Lonnie Honeycutt October 16, 20131 comment
Arduino Robotics

Beginner robotics is a series of article chronicling my first autonomous robot build, Clusterbot.  This build is meant to be affordable, relatively easy and instructive.  The total cost of the build is around $50.  

1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4. 

Introduction to Microcontrollers - More Timers and Displays

Mike Silva October 15, 20133 comments

Building Your World Around Timers

By now you have seen four different ways to use timers in your programs.  Next we will look at some ways to produce the effect of multiple parallel streams of work in your program with the help of timers.  This effect is only an appearance, not a reality, since a single microcontroller (one core) can only run a single thread of code.  However, since microcontrollers are so fast in relation to a great many of the tasks to...


Arduino robotics #1 - motor control

Lonnie Honeycutt October 13, 20133 comments
Arduino Robotics

Beginner robotics is a series of article chronicling my first autonomous robot build, Clusterbot.  This build is meant to be affordable, relatively easy and instructive.  The total cost of the build is around $50.  

1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4. 

Introduction to Microcontrollers - Adding Some Real-World Hardware

Mike Silva October 8, 20132 comments

When 2 LEDs Just Don't Cut It Anymore

So far, we've done everything in this series using two LEDs and one button.  I'm guessing that the thrill of blinking an LED has worn off by now, hard as that is to imagine.  What's more, we've just about reached the limits of what we can learn with such limited I/O.  We have come to the point where we need to add some hardware to our setup to continue with additional concepts and microcontroller...


Cortex-M Exception Handling (Part 2)

Ivan Cibrario Bertolotti February 1, 20169 comments

The first part of this article described the conditions for an exception request to be accepted by a Cortex-M processor, mainly concerning the relationship of its priority with respect to the current execution priority. This part will describe instead what happens after an exception request is accepted and becomes active.

PROCESSOR OPERATION AND PRIVILEGE MODE

Before discussing in detail the sequence of actions that occurs within the processor after an exception request...


Coding - Step 0: Setting Up a Development Environment

Stephen Friederichs November 25, 20145 comments

Articles in this series:

You can easily find a million articles out there discussing compiler nuances, weighing the pros and cons of various data structures or discussing the  optimization of databases. Those sorts of articles are fascinating reads for advanced programmers but...


Introduction to Microcontrollers - Adding Some Real-World Hardware

Mike Silva October 8, 20132 comments

When 2 LEDs Just Don't Cut It Anymore

So far, we've done everything in this series using two LEDs and one button.  I'm guessing that the thrill of blinking an LED has worn off by now, hard as that is to imagine.  What's more, we've just about reached the limits of what we can learn with such limited I/O.  We have come to the point where we need to add some hardware to our setup to continue with additional concepts and microcontroller...


Using XML to describe embedded devices (and speak to them)

Martin Strubel October 12, 20111 comment

This article discusses one of the typical development cycles in embedded device and communication design and presents a possible, light weight solution using the free DClib/netpp framework.

The challenge

Assume we're faced with the design of an embedded device, be it a simple SoC unit or a more complex, uC controlled engine with various attached peripherals. From first prototype to the market, the following development cycle is typically walked through:


Energia - program a TI MSP430 using Arduino sketches

Lonnie Honeycutt November 5, 20131 comment
TI MSP430 Launchpad

I started tinkering with microcontroller a couple of years ago with an Arduino Uno.  I had a little experience with C, so programming in the Arduino environment has been relatively easy and straightforward for me.  My code is not necessarily elegant or efficient, but I can usually figure out how to make an Arduino do what I want it to do eventually.  A lot of credit to the Arduino userbase, as it is very easy to figure most things out with a quick Google...


Real-time clocks: Does anybody really know what time it is?

Jason Sachs May 29, 20118 comments

We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...


C++ on microcontrollers 2 - LPCXpresso, LPC-link, Code Sourcery, lpc21isp, linkerscript, LPC1114 startup

Wouter van Ooijen October 24, 20115 comments

 previous parts: 1

This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers.  Reader input is very much appreciated, you might even steer me in the direction you find most interesting.

I teach my students that...


How to Arduino - a video toolbox

Lonnie Honeycutt November 15, 20131 comment

I've begun producing a new series of video tutorials for the hobbyist new to the Arduino or microcontrollers in general.  My videos are very pragmatic - I prefer to answer the question "what is the quickest, simplest and most affordable way to accomplish this?".  The videos are meant to be a quick source of "how to" knowledge for the hobbyist that is using an LCD display, ultrasonic sensor or accelerometer for the first time, for example.  I hope you enjoy this series of...


Introduction to Microcontrollers - More Timers and Displays

Mike Silva October 15, 20133 comments

Building Your World Around Timers

By now you have seen four different ways to use timers in your programs.  Next we will look at some ways to produce the effect of multiple parallel streams of work in your program with the help of timers.  This effect is only an appearance, not a reality, since a single microcontroller (one core) can only run a single thread of code.  However, since microcontrollers are so fast in relation to a great many of the tasks to...


Practical CRCs for Embedded Systems

Stephen Friederichs October 20, 20153 comments

CRCs are a very practical tool for embedded systems: you're likely to need to use one as part of a communications protocol or to verify the integrity of a program image before writing it to flash. But CRCs can be difficult to understand and tricky to implement. The first time I attempted to write CRC code from scratch I failed once. Then twice. Then three times. Eventually I gave up and used an existing library. I consider myself intelligent: I got A's...