
Understanding and Preventing Overflow (I Had Too Much to Add Last Night)
Happy Thanksgiving! Maybe the memory of eating too much turkey is fresh in your mind. If so, this would be a good time to talk about overflow.
In the world of floating-point arithmetic, overflow is possible but not particularly common. You can get it when numbers become too large; IEEE double-precision floating-point numbers support a range of just under 21024, and if you go beyond that you have problems:
for k in [10, 100, 1000, 1020, 1023, 1023.9, 1023.9999, 1024]: try: ...How to Arduino - a video toolbox
I've begun producing a new series of video tutorials for the hobbyist new to the Arduino or microcontrollers in general. My videos are very pragmatic - I prefer to answer the question "what is the quickest, simplest and most affordable way to accomplish this?". The videos are meant to be a quick source of "how to" knowledge for the hobbyist that is using an LCD display, ultrasonic sensor or accelerometer for the first time, for example. I hope you enjoy this series of...
Introduction to Microcontrollers - Driving WS2812 RGB LEDs
This tutorial chapter is a bit of a detour, but I think an interesting and useful one. It introduces a bit of assembly language programming, and demonstrates bit-banging a tight serial data protocol. And it deals with RGB LEDs, which are just very fun in their own right, especially these new parts. So I thought I'd post this to give readers time for some holiday lighting experimenting.
Back To The FutureRemember how we started this...
Introduction to Microcontrollers - Button Matrix & Auto Repeating
Too Many Buttons, Not Enough InputsAssigning one GPIO input to each button can use up a lot of GPIO pins. Numeric input requires at least 10 buttons, plus however many additional control or function buttons. This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be. A very common response to this expense is to wire buttons (keys, etc) in a matrix. By connecting our buttons in an...
Energia - program a TI MSP430 using Arduino sketches
TI MSP430 LaunchpadI started tinkering with microcontroller a couple of years ago with an Arduino Uno. I had a little experience with C, so programming in the Arduino environment has been relatively easy and straightforward for me. My code is not necessarily elegant or efficient, but I can usually figure out how to make an Arduino do what I want it to do eventually. A lot of credit to the Arduino userbase, as it is very easy to figure most things out with a quick Google...
Introduction to Microcontrollers - Buttons and Bouncing
What Is A Button?To your hardware, that is. As discussed in Introduction to Microcontrollers - More On GPIO, a button (or key, or switch, or any form of mechanical contact) is generally hooked up to a microcontroller so as to generate a certain logic level when pushed or closed or "active," and the opposite logic level when unpushed or open or "inactive." The active logic level can be either '0' or '1', but for reasons both historical and electrical, an...
Arduino robotics #4 - HC-SR04 ultrasonic sensor
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Arduino robotics #3 - wiring, coding and a test run
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Arduino robotics #2 - chassis, locomotion and power
Arduino RoboticsBeginner robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Introduction to Microcontrollers - More Timers and Displays
Building Your World Around TimersBy now you have seen four different ways to use timers in your programs. Next we will look at some ways to produce the effect of multiple parallel streams of work in your program with the help of timers. This effect is only an appearance, not a reality, since a single microcontroller (one core) can only run a single thread of code. However, since microcontrollers are so fast in relation to a great many of the tasks to...
Introduction to Microcontrollers - Timers
Timers - Because "When" MattersComputer programs are odd things, for one reason because they have no concept of time. They may have the concept of sequential execution, but the time between instructions can be essentially any number and the program won't notice or care (unless assumptions about time have been built into the program by the programmer). But the real world is not like this. In the real world, especially the real embedded world,...
Introduction to Microcontrollers - 7-segment displays & Multiplexing
Doing the 7 Segment ShuffleThe 7 segment display is ubiquitous in the modern world. Just about every digital clock, calculator and movie bomb has one. The treadmills at my gym have 6 or 7, each one displaying 3 or 4 digits. What makes the 7-seg interesting is that it presents an opportunity to make a trade off between GPIO (output pins) for time. Every 7-seg display requires 8 outputs (the 7 segments and usually either a decimal point or a...
Energia - program a TI MSP430 using Arduino sketches
TI MSP430 LaunchpadI started tinkering with microcontroller a couple of years ago with an Arduino Uno. I had a little experience with C, so programming in the Arduino environment has been relatively easy and straightforward for me. My code is not necessarily elegant or efficient, but I can usually figure out how to make an Arduino do what I want it to do eventually. A lot of credit to the Arduino userbase, as it is very easy to figure most things out with a quick Google...
Introduction to Microcontrollers - More On GPIO
Now that we have our LED Blinky program nailed down, it's time to look more closely at outputs, add button/switch inputs, and work with reading inputs and driving outputs based on those inputs.
It's ON - No, It's OFF - No, It's ON...I have to confess, I cheated. Well, let's say I glossed over something very important. In our LED Blinky program, we never cared about whether an output '1' or an output '0' turned on the LED. Since we were just...
Five Embedded Linux Topics for Newbies !
Are you an embedded systems enthusiast looking to broaden your horizons with embedded Linux? explore those 5 topics.
Cortex-M Exception Handling (Part 2)
The first part of this article described the conditions for an exception request to be accepted by a Cortex-M processor, mainly concerning the relationship of its priority with respect to the current execution priority. This part will describe instead what happens after an exception request is accepted and becomes active.
PROCESSOR OPERATION AND PRIVILEGE MODEBefore discussing in detail the sequence of actions that occurs within the processor after an exception request...
Introduction to Microcontrollers - Buttons and Bouncing
What Is A Button?To your hardware, that is. As discussed in Introduction to Microcontrollers - More On GPIO, a button (or key, or switch, or any form of mechanical contact) is generally hooked up to a microcontroller so as to generate a certain logic level when pushed or closed or "active," and the opposite logic level when unpushed or open or "inactive." The active logic level can be either '0' or '1', but for reasons both historical and electrical, an...
Introduction to Microcontrollers - Further Beginnings
Embedded Programming BasicsThis tutorial entry will discuss some further embedded programming basics that you will need to understand before proceeding on to the LED blinky and other example programs. We will do this by looking at the general organization and types of instructions found in most microcontrollers, and how that organization and those instructions are reflected (or, in some cases, ignored) by the C programming language.
Basic CPU...Picowoose: The Raspberry Pi Pico-W meets Mongoose
This example application describes the way to adapt the George Robotics CYW43 driver, present in the Pico-SDK, to work with Cesanta's Mongoose. We are then able to use Mongoose internal TCP/IP stack (with TLS 1.3), instead of lwIP (and MbedTLS).
Coding Step 1 - Hello World and Makefiles
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
Step 0 discussed how to install GCC and the make utility with the expectation of writing and compiling your first C program. In this article, I discuss how to use those tools we installed last time. Specifically, how to use GCC to compile a C program and...
Cortex-M Exception Handling (Part 2)
The first part of this article described the conditions for an exception request to be accepted by a Cortex-M processor, mainly concerning the relationship of its priority with respect to the current execution priority. This part will describe instead what happens after an exception request is accepted and becomes active.
PROCESSOR OPERATION AND PRIVILEGE MODEBefore discussing in detail the sequence of actions that occurs within the processor after an exception request...
Coding - Step 0: Setting Up a Development Environment
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
You can easily find a million articles out there discussing compiler nuances, weighing the pros and cons of various data structures or discussing the optimization of databases. Those sorts of articles are fascinating reads for advanced programmers but...
Introduction to Microcontrollers - Adding Some Real-World Hardware
When 2 LEDs Just Don't Cut It AnymoreSo far, we've done everything in this series using two LEDs and one button. I'm guessing that the thrill of blinking an LED has worn off by now, hard as that is to imagine. What's more, we've just about reached the limits of what we can learn with such limited I/O. We have come to the point where we need to add some hardware to our setup to continue with additional concepts and microcontroller...
Using XML to describe embedded devices (and speak to them)
This article discusses one of the typical development cycles in embedded device and communication design and presents a possible, light weight solution using the free DClib/netpp framework.
The challengeAssume we're faced with the design of an embedded device, be it a simple SoC unit or a more complex, uC controlled engine with various attached peripherals. From first prototype to the market, the following development cycle is typically walked through:
Energia - program a TI MSP430 using Arduino sketches
TI MSP430 LaunchpadI started tinkering with microcontroller a couple of years ago with an Arduino Uno. I had a little experience with C, so programming in the Arduino environment has been relatively easy and straightforward for me. My code is not necessarily elegant or efficient, but I can usually figure out how to make an Arduino do what I want it to do eventually. A lot of credit to the Arduino userbase, as it is very easy to figure most things out with a quick Google...
Real-time clocks: Does anybody really know what time it is?
We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...
Practical CRCs for Embedded Systems
CRCs are a very practical tool for embedded systems: you're likely to need to use one as part of a communications protocol or to verify the integrity of a program image before writing it to flash. But CRCs can be difficult to understand and tricky to implement. The first time I attempted to write CRC code from scratch I failed once. Then twice. Then three times. Eventually I gave up and used an existing library. I consider myself intelligent: I got A's...
C++ on microcontrollers 2 - LPCXpresso, LPC-link, Code Sourcery, lpc21isp, linkerscript, LPC1114 startup
previous parts: 1
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
I teach my students that...
How to Arduino - a video toolbox
I've begun producing a new series of video tutorials for the hobbyist new to the Arduino or microcontrollers in general. My videos are very pragmatic - I prefer to answer the question "what is the quickest, simplest and most affordable way to accomplish this?". The videos are meant to be a quick source of "how to" knowledge for the hobbyist that is using an LCD display, ultrasonic sensor or accelerometer for the first time, for example. I hope you enjoy this series of...
Introduction to Microcontrollers - More Timers and Displays
Building Your World Around TimersBy now you have seen four different ways to use timers in your programs. Next we will look at some ways to produce the effect of multiple parallel streams of work in your program with the help of timers. This effect is only an appearance, not a reality, since a single microcontroller (one core) can only run a single thread of code. However, since microcontrollers are so fast in relation to a great many of the tasks to...
