EmbeddedRelated.com

Mike Silva (@mjsilva)

Mike is a long time embedded software and hardware guy with a special interest in helping newbies to the field.

Introduction to Microcontrollers - Ada - 7 Segments and Catching Errors

Mike Silva September 22, 20145 comments

7 Segments the Ada Way

Here is the Ada version (I should say AN Ada version) of the 7 segment multiplexing code presented in the last installment.  The hardware now is the STM32F407 Discover board, which is a Cortex M4F board.  There are lots of differences in GPIO and timer setup, but if you understoold the previous code in C you should not have much trouble understanding this code in Ada.

As interesting as the Ada approach to the task is the Ada ability to detect...


Introduction to Microcontrollers - 7-segment displays & Multiplexing

Mike Silva August 14, 20141 comment

Doing the 7 Segment Shuffle

The 7 segment display is ubiquitous in the modern world.  Just about every digital clock, calculator and movie bomb has one.  The treadmills at my gym have 6 or 7, each one displaying 3 or 4 digits.  What makes the 7-seg interesting is that it presents an opportunity to make a trade off between GPIO (output pins) for time.  Every 7-seg display requires 8 outputs (the 7 segments and usually either a decimal point or a...


Ada 2012 for ARM M3/M4 Released for Download

Mike Silva August 4, 201412 comments
Previous Ada Tutorials

Ada 2012 Comes to ARM Cortex M3/M4

It's Here!

Great news - AdaCore now has their initial ARM Ada port available on their download site.  You can get it by going to http://libre.adacore.com/download/ and working your way to the page titled "Download GNAT GPL and SPARK GPL Editions".  There, under "Select Configurations" you will see ARM ELF for Linux and for Windows.  Those are the ones you want.

Porting the Ada...


Ada 2012 Comes to ARM Cortex M3/M4

Mike Silva April 25, 20148 comments
Ada, that old dinosaur?  I thought Ada was dead!

Admit it, at least a few of you had that thought, right?  Well, far from being dead, the Ada language has been evolving, improving, and helping to save lives, property and money around the world for the past 30 years.  And what's more, the latest version of the language, Ada 2012, will soon be coming to a two-dollar microcontroller near you.

A Personal Dream Come True

OK, maybe that's going too far -...


Introduction to Microcontrollers - Driving WS2812 RGB LEDs

Mike Silva November 14, 201330 comments

This tutorial chapter is a bit of a detour, but I think an interesting and useful one.  It introduces a bit of assembly language programming, and demonstrates bit-banging a tight serial data protocol.  And it deals with RGB LEDs, which are just very fun in their own right, especially these new parts.  So I thought I'd post this to give readers time for some holiday lighting experimenting.

Back To The Future

Remember how we started this...


Introduction to Microcontrollers - Button Matrix & Auto Repeating

Mike Silva November 12, 2013

Too Many Buttons, Not Enough Inputs

Assigning one GPIO input to each button can use up a lot of GPIO pins.  Numeric input requires at least 10 buttons, plus however many additional control or function buttons.  This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be.  A very common response to this expense is to wire buttons (keys, etc) in a matrix.  By connecting our buttons in an...


Introduction to Microcontrollers - Buttons and Bouncing

Mike Silva October 26, 20133 comments

What Is A Button?

To your hardware, that is.  As discussed in Introduction to Microcontrollers - More On GPIO, a button (or key, or switch, or any form of mechanical contact) is generally hooked up to a microcontroller so as to generate a certain logic level when pushed or closed or "active," and the opposite logic level when unpushed or open or "inactive."  The active logic level can be either '0' or '1', but for reasons both historical and electrical, an...


Introduction to Microcontrollers - More Timers and Displays

Mike Silva October 15, 20133 comments

Building Your World Around Timers

By now you have seen four different ways to use timers in your programs.  Next we will look at some ways to produce the effect of multiple parallel streams of work in your program with the help of timers.  This effect is only an appearance, not a reality, since a single microcontroller (one core) can only run a single thread of code.  However, since microcontrollers are so fast in relation to a great many of the tasks to...


Introduction to Microcontrollers - Adding Some Real-World Hardware

Mike Silva October 8, 20132 comments

When 2 LEDs Just Don't Cut It Anymore

So far, we've done everything in this series using two LEDs and one button.  I'm guessing that the thrill of blinking an LED has worn off by now, hard as that is to imagine.  What's more, we've just about reached the limits of what we can learn with such limited I/O.  We have come to the point where we need to add some hardware to our setup to continue with additional concepts and microcontroller...


Introduction to Microcontrollers - Timers

Mike Silva September 27, 20132 comments

Timers - Because "When" Matters

Computer programs are odd things, for one reason because they have no concept of time.  They may have the concept of sequential execution, but the time between instructions can be essentially any number and the program won't notice or care (unless assumptions about time have been built into the program by the programmer).  But the real world is not like this.  In the real world, especially the real embedded world,...


Introduction to Microcontrollers - More On Interrupts

Mike Silva September 25, 2013

A Little More Detail About The Interrupt Mechanism

It's time to look a little closer at what happens in an interrupt request and response.  Again this is in general terms, and different microcontroller designs may do things somewhat differently, but the basics remain the same.  Most but not all interrupt requests are latched, which means the interrupt event sets a flag that stays set even if the interrupt event then goes away.  It is this latched flag...


Introduction to Microcontrollers - Interrupts

Mike Silva September 18, 20136 comments

It's Too Soon To Talk About Interrupts!

That, at least, could be one reaction to this chapter.  But over the years I've become convinced that new microcontroller programmers should understand interrupts before being introduced to any complex peripherals such as timers, UARTs, ADCs, and all the other powerful function blocks found on a modern microcontroller.  Since these peripherals are commonly used with interrupts, any introduction to them that does not...


Introduction to Microcontrollers - More On GPIO

Mike Silva September 13, 20134 comments

Now that we have our LED Blinky program nailed down, it's time to look more closely at outputs, add button/switch inputs, and work with reading inputs and driving outputs based on those inputs.

It's ON - No, It's OFF - No, It's ON...

I have to confess, I cheated.  Well, let's say I glossed over something very important.  In our LED Blinky program, we never cared about whether an output '1' or an output '0' turned on the LED.  Since we were just...


Introduction to Microcontrollers - Hello World

Mike Silva September 11, 201316 comments

Embedded Hello World

A standard first program on an embedded platform is the blinking LED.  Getting an LED to blink demonstrates that you have your toolchain set up correctly, that you are able to download your program code into the μC, and that the μC and associated circuitry (e.g. the power supply) is all working.  It can even give you good evidence as to the clock rate that your microcontroller is running (something that trips up a great many people,...


Introduction to Microcontrollers - Further Beginnings

Mike Silva September 1, 20134 comments
Embedded Programming Basics

This tutorial entry will discuss some further embedded programming basics that you will need to understand before proceeding on to the LED blinky and other example programs. We will do this by looking at the general organization and types of instructions found in most microcontrollers, and how that organization and those instructions are reflected (or, in some cases, ignored) by the C programming language.

Basic CPU...

Introduction to Microcontrollers - Beginnings

Mike Silva August 20, 201313 comments

Welcome to this Introduction to Microcontroller Programming tutorial series. If you are looking to learn the basics of embedded programming for microcontrollers (and a bit of embedded hardware design as well), I hope these tutorials will help you along that journey. These are my first postings here, and I am writing this tutorial series because over the years I have seen countless newbies asking the same questions and tripping over the same stumbling blocks, and I thought I might be able to...


No Threads Found

Use this form to contact mjsilva

Before you can contact a member of the *Related Sites:

  • You must be logged in (register here)
  • You must confirm you email address