
Optimizing Hardware Design: Reducing Iterations with DSM
Often, product teams curate feature roadmaps that fail to account for the interdependencies in product components. For this article, I wrote about how system architecture tools like Design(dependency) Structure matrix (DSM) can be used to evaluate feature roadmaps to avoid the purgatory of change propagation and accompanying endless Iteration loops. These iteration loops are sometimes affordable (manageable) in software development (Agile saves lives), but for hardware teams - especially small product teams and startups - the lost time, and money is the stuff of which product graves are made.
Optimizing Hardware Design: Reducing Iterations with DSM
Often, product teams curate feature roadmaps that fail to account for the interdependencies in product components. For this article, I wrote about how system architecture tools like Design(dependency) Structure matrix (DSM) can be used to evaluate feature roadmaps to avoid the purgatory of change propagation and accompanying endless Iteration loops. These iteration loops are sometimes affordable (manageable) in software development (Agile saves lives), but for hardware teams - especially small product teams and startups - the lost time, and money is the stuff of which product graves are made.
Optimizing Hardware Design: Reducing Iterations with DSM
Often, product teams curate feature roadmaps that fail to account for the interdependencies in product components. For this article, I wrote about how system architecture tools like Design(dependency) Structure matrix (DSM) can be used to evaluate feature roadmaps to avoid the purgatory of change propagation and accompanying endless Iteration loops. These iteration loops are sometimes affordable (manageable) in software development (Agile saves lives), but for hardware teams - especially small product teams and startups - the lost time, and money is the stuff of which product graves are made.
