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The high cost of RAM ensures that most embedded systems will continue to experience a 

shortage of memory, The software you use to implement these systems will use queues, linked 

lists, task-control blocks, messages, I/O buffers, and other structures that require memory only 

for a short time and that may return it to serve other functions. This is known as dynamic 

memory allocation. If you're programming in C, this probably means using the memory 

allocation and release functions, malloc() and free(). 

Dynamic memory allocation and the structures that implement it in C are so universal that they're 

usually treated as a black box. In the real world of embedded systems, however, that may not 

always be desirable or even possible. Not all vendors of C compilers for embedded systems 

provide the memory allocation and release functions. We recently encountered a compiler that 

purported to have them but didn't document their interfaces. Because we needed tight control 

over the memory allocation process, we decided to write our own routines. 

Rather than start from scratch, the simplest solution seemed to be to copy the allocator from 

Kernighan and Ritchie's The C Programming Language (Englewood Cliffs, N.J.: Prentice-Hall, 

1988). Unfortunately, the functions presented in that inestimable resource are meant to interface 

to an operating system that will supply large blocks of memory on request. The algorithm we'll 

use here doesn't differ drastically from K&R's version, but it's clearer and better suited to an 

embedded system environment. The code works for twobyte address pointers but can easily be 

modified to handle any size. 

A dynamic memory allocator should meet certain minimum requirements: 

• All internal structures and linkage must be hidden from the call-only the number of bytes 

required should have to be specified. 

• The order of calls to malloc() and free() shouldn't matter (the order of calls to free() need 

not be the reverse of the order of calls to malloc()). 

• free() must prevent fragmentation of freed memory; all small, freed blocks must be combined 

into larger, contiguous blocks where possible. 

• Overhead in memory and execution time must be minimized. 

• An error condition must be returned if no memory is available. 



The design 

Malloc() allocates memory in units of structures called header blocks. For systems with two-

byte memory pointers, where available memory is less than 64 kbytes, each header block 

comprises four bytes. For larger memory models, the header must be expanded to allow a four-

byte pointer and a long integer value for the size of the block. Header blocks are defined as 

follows:  

typedef struct hdr { 

  struct hdr *ptr; 

  unsigned int size; 

} HEADER; 

A forward-linked list, the head of which is frhd, keeps track of available space. During system 

operation, contiguous free blocks combine to form larger blocks. We didn't implement a best-fit 

scheme for allocation; the first block that's large enough is allocated. 

Each allocated block has a header that specifies the length of the block in HEADER-size units. 

When the block is freed, the free() function uses the header to link it back into the free list. The 

caller doesn't see or need to be aware of this header; the pointer to the allocated space points just 

beyond it. 

Initialization 

The external variables _heap-start and _heapend must be defined as the first and last bytes of 

RAM available to malloc(). The linker or binding utility used to build the object program 

normally provides a facility for defining external names and assigning absolute memory 

addresses to them. The addresses can be assigned directly in C; for example:  

#define _heapstart (HEADER *)0x1000 

#define _heapend   (HEADER *)0x2000 

The application must call i_alloc() prior to calling malloc() or free(). Normally called from 

main(), i_alloc() initializes the free-space pointer to indicate the first available byte of heap 

space. (By convention, heap generally refers to the pool of memory available for dynamic 

allocation at run-time.) The free-space pointer initially indicates a header showing that the entire 

heap area is free and no other free blocks exist (see Figure 1). The size of the free space is 

calculated in HEADER-size units. 

 



When pointers to a structure are added or subtracted in C, the result is divided by the size of the 

structure. For example, if _heapstart and _heapend differ by 4,096 bytes and the size of the 

structure HEADER is four bytes, the result of the pointer arithmetic is 1,024. 

The available space can be thought of as an array of header blocks and the calculation as finding 

the number of entries in the array. 

Allocating and freeing memory 

Malloc() calculates the number of HEADER-size units required to satisfy the request. It rounds 

the result up and adds one unit for the header, which is part of the block allocated. For speed, the 

calculation could contain a shift instead of a divide.  

This function searches the free list for a block large enough to meet our needs. If the block is 

exactly the right size, we remove it from the linked list and allocate the entire block to the caller. 

If the block is larger than required, malloc() splits it by creating a new header inside the block 

and decrementing the original block header size by the amount requested. The pointer is 

incremented by the remaining size, resulting in a pointer to a new header. The requested size is 

then put into this new header and, as a result, the block splits in two. The upper section (higher in 

memory) is allocated to the caller, while the lower section remains in the free list (see Figure 2). 

The caller receives a pointer to the block just beyond the header. 

 

The application uses free() to return allocated blocks. Because the pointer returned by 

malloc() points one header unit beyond the actual header for the block, free() decrements it 

by one on entry to point to the original header for the block being returned. The block being 

freed could be located: 

• Lower in memory than the first entry in the free list, in which case it becomes the new free-list 

head. 

• Between entries in the free list. 

• Higher in memory than the last entry and therefore linked to the end of the list. 



If the returned block is lower in memory than the first entry, it's linked as the new first entry 

ahead of the previous free-list head. The free() function then calculates the address of the byte 

immediately following the returned block. If this address equals the address of the next free-

space entry, the two entries combine to form one larger, contiguous free block. 

If the returned block is found to lie between two entries of the free list, we check to see if it's 

contiguous to the block lower in memory. If so, a larger contiguous block is formed. 

Similarly, we check to see if this new, larger block is contiguous to the entry just above it and, if 

so, make a larger contiguous block. If the entry isn't found, we make a new entry in the free 

queue for the returned block (see Figure 3) and we again attempt to form a block that's 

contiguous to the entry just above it in the free list. 

 

In this way, malloc() and free() assure that memory doesn't stay fragmented after it's freed. 

Eventually, if all the allocated blocks are freed, one free-list entry will point to one contiguous 

block containing all the heap space. 

A practical example 
Our allocator has proved quite fast and efficient in practice. For example, we used the allocator 

on a data communications switch based on a Motorola 6809 processor. The system switched data 

packets to and from an IBM PC and 10 terminals over 9,600-baud RS-232 serial lines. The 

terminals interfaced to other devices at lower baud rates. 

We used the allocator to dynamically allocate and release memory for the data packets. System 

constraints required that no port be allowed to monopolize the system, so we modified the code 

presented here (see Listing 1) to limit the amount of memory allocated to any one port. For each 

port, we specified upper and lower threshold for available memory. When a port hit or passed the 

lower threshold, it was marked busy and received no more packets from the file server until it 



freed enough memory to pass the upper threshold value. Because we wrote the allocator, 

modifying it for such low-level control was fairly easy.  

Listing 1 : 

 

 

 



 

 



 


