
Memory allocation in C

Leslie Aldridge, August 11, 2008

(This article first appeared in the August 1989 issue of Embedded Systems Programming

magazine.)

The high cost of RAM ensures that most embedded systems will continue to experience a

shortage of memory, The software you use to implement these systems will use queues, linked

lists, task-control blocks, messages, I/O buffers, and other structures that require memory only

for a short time and that may return it to serve other functions. This is known as dynamic

memory allocation. If you're programming in C, this probably means using the memory

allocation and release functions, malloc() and free().

Dynamic memory allocation and the structures that implement it in C are so universal that they're

usually treated as a black box. In the real world of embedded systems, however, that may not

always be desirable or even possible. Not all vendors of C compilers for embedded systems

provide the memory allocation and release functions. We recently encountered a compiler that

purported to have them but didn't document their interfaces. Because we needed tight control

over the memory allocation process, we decided to write our own routines.

Rather than start from scratch, the simplest solution seemed to be to copy the allocator from

Kernighan and Ritchie's The C Programming Language (Englewood Cliffs, N.J.: Prentice-Hall,

1988). Unfortunately, the functions presented in that inestimable resource are meant to interface

to an operating system that will supply large blocks of memory on request. The algorithm we'll

use here doesn't differ drastically from K&R's version, but it's clearer and better suited to an

embedded system environment. The code works for twobyte address pointers but can easily be

modified to handle any size.

A dynamic memory allocator should meet certain minimum requirements:

• All internal structures and linkage must be hidden from the call-only the number of bytes

required should have to be specified.

• The order of calls to malloc() and free() shouldn't matter (the order of calls to free() need

not be the reverse of the order of calls to malloc()).

• free() must prevent fragmentation of freed memory; all small, freed blocks must be combined

into larger, contiguous blocks where possible.

• Overhead in memory and execution time must be minimized.

• An error condition must be returned if no memory is available.

The design

Malloc() allocates memory in units of structures called header blocks. For systems with two-

byte memory pointers, where available memory is less than 64 kbytes, each header block

comprises four bytes. For larger memory models, the header must be expanded to allow a four-

byte pointer and a long integer value for the size of the block. Header blocks are defined as

follows:

typedef struct hdr {

 struct hdr *ptr;

 unsigned int size;

} HEADER;

A forward-linked list, the head of which is frhd, keeps track of available space. During system

operation, contiguous free blocks combine to form larger blocks. We didn't implement a best-fit

scheme for allocation; the first block that's large enough is allocated.

Each allocated block has a header that specifies the length of the block in HEADER-size units.

When the block is freed, the free() function uses the header to link it back into the free list. The

caller doesn't see or need to be aware of this header; the pointer to the allocated space points just

beyond it.

Initialization

The external variables _heap-start and _heapend must be defined as the first and last bytes of

RAM available to malloc(). The linker or binding utility used to build the object program

normally provides a facility for defining external names and assigning absolute memory

addresses to them. The addresses can be assigned directly in C; for example:

#define _heapstart (HEADER *)0x1000

#define _heapend (HEADER *)0x2000

The application must call i_alloc() prior to calling malloc() or free(). Normally called from

main(), i_alloc() initializes the free-space pointer to indicate the first available byte of heap

space. (By convention, heap generally refers to the pool of memory available for dynamic

allocation at run-time.) The free-space pointer initially indicates a header showing that the entire

heap area is free and no other free blocks exist (see Figure 1). The size of the free space is

calculated in HEADER-size units.

When pointers to a structure are added or subtracted in C, the result is divided by the size of the

structure. For example, if _heapstart and _heapend differ by 4,096 bytes and the size of the

structure HEADER is four bytes, the result of the pointer arithmetic is 1,024.

The available space can be thought of as an array of header blocks and the calculation as finding

the number of entries in the array.

Allocating and freeing memory

Malloc() calculates the number of HEADER-size units required to satisfy the request. It rounds

the result up and adds one unit for the header, which is part of the block allocated. For speed, the

calculation could contain a shift instead of a divide.

This function searches the free list for a block large enough to meet our needs. If the block is

exactly the right size, we remove it from the linked list and allocate the entire block to the caller.

If the block is larger than required, malloc() splits it by creating a new header inside the block

and decrementing the original block header size by the amount requested. The pointer is

incremented by the remaining size, resulting in a pointer to a new header. The requested size is

then put into this new header and, as a result, the block splits in two. The upper section (higher in

memory) is allocated to the caller, while the lower section remains in the free list (see Figure 2).

The caller receives a pointer to the block just beyond the header.

The application uses free() to return allocated blocks. Because the pointer returned by

malloc() points one header unit beyond the actual header for the block, free() decrements it

by one on entry to point to the original header for the block being returned. The block being

freed could be located:

• Lower in memory than the first entry in the free list, in which case it becomes the new free-list

head.

• Between entries in the free list.

• Higher in memory than the last entry and therefore linked to the end of the list.

If the returned block is lower in memory than the first entry, it's linked as the new first entry

ahead of the previous free-list head. The free() function then calculates the address of the byte

immediately following the returned block. If this address equals the address of the next free-

space entry, the two entries combine to form one larger, contiguous free block.

If the returned block is found to lie between two entries of the free list, we check to see if it's

contiguous to the block lower in memory. If so, a larger contiguous block is formed.

Similarly, we check to see if this new, larger block is contiguous to the entry just above it and, if

so, make a larger contiguous block. If the entry isn't found, we make a new entry in the free

queue for the returned block (see Figure 3) and we again attempt to form a block that's

contiguous to the entry just above it in the free list.

In this way, malloc() and free() assure that memory doesn't stay fragmented after it's freed.

Eventually, if all the allocated blocks are freed, one free-list entry will point to one contiguous

block containing all the heap space.

A practical example
Our allocator has proved quite fast and efficient in practice. For example, we used the allocator

on a data communications switch based on a Motorola 6809 processor. The system switched data

packets to and from an IBM PC and 10 terminals over 9,600-baud RS-232 serial lines. The

terminals interfaced to other devices at lower baud rates.

We used the allocator to dynamically allocate and release memory for the data packets. System

constraints required that no port be allowed to monopolize the system, so we modified the code

presented here (see Listing 1) to limit the amount of memory allocated to any one port. For each

port, we specified upper and lower threshold for available memory. When a port hit or passed the

lower threshold, it was marked busy and received no more packets from the file server until it

freed enough memory to pass the upper threshold value. Because we wrote the allocator,

modifying it for such low-level control was fairly easy.

Listing 1 :

